坦永普拉大学专业道路案例研究的车辆流量计数器

Agung Tuah Ananda, Yus Sholva, Rudy Dwi Nyoto
{"title":"坦永普拉大学专业道路案例研究的车辆流量计数器","authors":"Agung Tuah Ananda, Yus Sholva, Rudy Dwi Nyoto","doi":"10.26418/jp.v8i3.57136","DOIUrl":null,"url":null,"abstract":"Pertumbuhan penggunaan kendaraan bermotor untuk transportasi oleh masyarakat terus meningkat seiring waktu. Sebagai lembaga pendidikan tinggi dengan jumlah mahasiswa aktif mencapai angka 31 ribu orang maka Universitas Tanjungpura perlu menyadari bagaimana penggunaan jalan oleh pengendara kendaraan bermotor di Universitas Tanjungpura dalam bagian dari perencanaan pembangunannya untuk menghindari permasalahan yang mungkin timbul dikemudian hari. Penelitian ini bertujuan untuk menghasilkan suatu sistem yang dapat menghitung trafik kendaraan di jalan masuk utama Universitas Tanjungpura. Peneliti menggunakan pendekatan object recognition untuk mengetahui jenis kendaraan yang lewat apakah merupakan kendaraan sepeda motor atau mobil, dimana digunakan metode background subtraction dan pemrosesan morfologi dalam tugas deteksi objek, dan metode Haar cascade classifier dalam tugas klasifikasi jenis kendaraan dari objek yang terdeteksi. Pada penelitian ini dilatih model klasifikasi kendaraan sepeda motor (masuk dan keluar) dengan masing-masing 5000 data latih dan model klasifikasi kendaraan mobil (masuk dan keluar) dengan masing-masing 500 data latih. Evaluasi pendeteksi objek menunjukkan bahwa program dapat mendeteksi objek yang bergerak dengan akurasi dengan akurasi terendah sebesar 67% dan akurasi tertinggi sebesar 93%. Evaluasi model klasifikasi kendaraan menunjukkan nilai F1-score rata-rata 0.916 (sepeda motor masuk), 0.311 (mobil masuk), 0.965 (sepeda motor keluar) dan 0.427 (mobil keluar). Evaluasi menunjukkan tidak terdapat pengaruh yang signifikan mengenai perbedaan kondisi waktu dan kepadatan trafik kendaraan terhadap performa model klasifikasi kendaraan. Di mana nilai rata-rata f1-score pada pengujian pagi, siang dan sore adalah masing-masing 68%, 62% dan 67% dan rata-rata akurasi pada pengujian padat, sedang dan sepi adalah masing-masing 89%, 86% dan 88%. Hasil pengujian unit testing dan integration testing menunjukkan sistem ini dapat mendeteksi objek kendaraan yang lewat, mengetahui jenis kendaraan tersebut dan menghitung jumlahnya serta menyediakan cara untuk mendapatkan data trafik kendaraan yang dihasilkan. Secara keseluruhan penelitian dinilai berhasil dalam membuat sebuah sistem penghitung trafik kendaraan berbasis object recognition studi kasus jalan utama Universitas Tanjungpura.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penghitung Trafik Kendaraan Berbasis Object Recognition Studi Kasus Jalan Utama Universitas Tanjungpura\",\"authors\":\"Agung Tuah Ananda, Yus Sholva, Rudy Dwi Nyoto\",\"doi\":\"10.26418/jp.v8i3.57136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pertumbuhan penggunaan kendaraan bermotor untuk transportasi oleh masyarakat terus meningkat seiring waktu. Sebagai lembaga pendidikan tinggi dengan jumlah mahasiswa aktif mencapai angka 31 ribu orang maka Universitas Tanjungpura perlu menyadari bagaimana penggunaan jalan oleh pengendara kendaraan bermotor di Universitas Tanjungpura dalam bagian dari perencanaan pembangunannya untuk menghindari permasalahan yang mungkin timbul dikemudian hari. Penelitian ini bertujuan untuk menghasilkan suatu sistem yang dapat menghitung trafik kendaraan di jalan masuk utama Universitas Tanjungpura. Peneliti menggunakan pendekatan object recognition untuk mengetahui jenis kendaraan yang lewat apakah merupakan kendaraan sepeda motor atau mobil, dimana digunakan metode background subtraction dan pemrosesan morfologi dalam tugas deteksi objek, dan metode Haar cascade classifier dalam tugas klasifikasi jenis kendaraan dari objek yang terdeteksi. Pada penelitian ini dilatih model klasifikasi kendaraan sepeda motor (masuk dan keluar) dengan masing-masing 5000 data latih dan model klasifikasi kendaraan mobil (masuk dan keluar) dengan masing-masing 500 data latih. Evaluasi pendeteksi objek menunjukkan bahwa program dapat mendeteksi objek yang bergerak dengan akurasi dengan akurasi terendah sebesar 67% dan akurasi tertinggi sebesar 93%. Evaluasi model klasifikasi kendaraan menunjukkan nilai F1-score rata-rata 0.916 (sepeda motor masuk), 0.311 (mobil masuk), 0.965 (sepeda motor keluar) dan 0.427 (mobil keluar). Evaluasi menunjukkan tidak terdapat pengaruh yang signifikan mengenai perbedaan kondisi waktu dan kepadatan trafik kendaraan terhadap performa model klasifikasi kendaraan. Di mana nilai rata-rata f1-score pada pengujian pagi, siang dan sore adalah masing-masing 68%, 62% dan 67% dan rata-rata akurasi pada pengujian padat, sedang dan sepi adalah masing-masing 89%, 86% dan 88%. Hasil pengujian unit testing dan integration testing menunjukkan sistem ini dapat mendeteksi objek kendaraan yang lewat, mengetahui jenis kendaraan tersebut dan menghitung jumlahnya serta menyediakan cara untuk mendapatkan data trafik kendaraan yang dihasilkan. Secara keseluruhan penelitian dinilai berhasil dalam membuat sebuah sistem penghitung trafik kendaraan berbasis object recognition studi kasus jalan utama Universitas Tanjungpura.\",\"PeriodicalId\":31793,\"journal\":{\"name\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JEPIN Jurnal Edukasi dan Penelitian Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/jp.v8i3.57136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v8i3.57136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着时间的推移,社会交通工具的使用增长。作为一所活跃的高等教育机构,坦永普拉大学(Tanjungpura university)有31000名学生,因此有必要了解,坦永普拉大学(Tanjungpura university)中骑摩托车的人如何参与其建设计划,以避免今后可能出现的问题。这项研究的目的是建立一个能够计算坦噶普拉大学主入口车辆流量的系统。研究人员使用目标识别方法来确定过路车辆的类型,这些车辆是自行车还是汽车,在其中使用了物体探测任务中的背景牵引和形态处理方法,以及Haar cas凯德古典fier方法在可检测对象的类型分类任务中使用。在这项研究中,接受的是一种摩托车分类模型,每辆车有5000个培训数据,每辆车有500个培训数据。物体探测评估表明,该程序可以检测以67%最低的准确性和93%的精度移动的物体。车辆分类模型的评估显示,0916(摩托车进入)、0311(汽车进入)、0965(摩托车出口)和0427(汽车出口)的平均得分。评估显示,对车辆时间状况的差异和车辆密度与汽车分类模型的性能没有显著影响。上午、中午和下午测试的f1分数分别为68%、62%和67%,而固体测试的平均准确率为89%、86%和88%。测试单元和整合测试结果表明,该系统可以检测过路车辆的物体、了解车辆类型、计算数量并提供获取车辆流量数据的方法。总的来说,这项研究被认为是成功地创建了一个基于目标目标的车辆交通计数器系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penghitung Trafik Kendaraan Berbasis Object Recognition Studi Kasus Jalan Utama Universitas Tanjungpura
Pertumbuhan penggunaan kendaraan bermotor untuk transportasi oleh masyarakat terus meningkat seiring waktu. Sebagai lembaga pendidikan tinggi dengan jumlah mahasiswa aktif mencapai angka 31 ribu orang maka Universitas Tanjungpura perlu menyadari bagaimana penggunaan jalan oleh pengendara kendaraan bermotor di Universitas Tanjungpura dalam bagian dari perencanaan pembangunannya untuk menghindari permasalahan yang mungkin timbul dikemudian hari. Penelitian ini bertujuan untuk menghasilkan suatu sistem yang dapat menghitung trafik kendaraan di jalan masuk utama Universitas Tanjungpura. Peneliti menggunakan pendekatan object recognition untuk mengetahui jenis kendaraan yang lewat apakah merupakan kendaraan sepeda motor atau mobil, dimana digunakan metode background subtraction dan pemrosesan morfologi dalam tugas deteksi objek, dan metode Haar cascade classifier dalam tugas klasifikasi jenis kendaraan dari objek yang terdeteksi. Pada penelitian ini dilatih model klasifikasi kendaraan sepeda motor (masuk dan keluar) dengan masing-masing 5000 data latih dan model klasifikasi kendaraan mobil (masuk dan keluar) dengan masing-masing 500 data latih. Evaluasi pendeteksi objek menunjukkan bahwa program dapat mendeteksi objek yang bergerak dengan akurasi dengan akurasi terendah sebesar 67% dan akurasi tertinggi sebesar 93%. Evaluasi model klasifikasi kendaraan menunjukkan nilai F1-score rata-rata 0.916 (sepeda motor masuk), 0.311 (mobil masuk), 0.965 (sepeda motor keluar) dan 0.427 (mobil keluar). Evaluasi menunjukkan tidak terdapat pengaruh yang signifikan mengenai perbedaan kondisi waktu dan kepadatan trafik kendaraan terhadap performa model klasifikasi kendaraan. Di mana nilai rata-rata f1-score pada pengujian pagi, siang dan sore adalah masing-masing 68%, 62% dan 67% dan rata-rata akurasi pada pengujian padat, sedang dan sepi adalah masing-masing 89%, 86% dan 88%. Hasil pengujian unit testing dan integration testing menunjukkan sistem ini dapat mendeteksi objek kendaraan yang lewat, mengetahui jenis kendaraan tersebut dan menghitung jumlahnya serta menyediakan cara untuk mendapatkan data trafik kendaraan yang dihasilkan. Secara keseluruhan penelitian dinilai berhasil dalam membuat sebuah sistem penghitung trafik kendaraan berbasis object recognition studi kasus jalan utama Universitas Tanjungpura.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信