对称三瓣滑动轴承的探测不对称不确定效应

IF 1.6 3区 工程技术 Q3 ENGINEERING, MECHANICAL
B. Roy, L. Roy, S. Dey
{"title":"对称三瓣滑动轴承的探测不对称不确定效应","authors":"B. Roy, L. Roy, S. Dey","doi":"10.1177/13506501231165564","DOIUrl":null,"url":null,"abstract":"The conventional design process of journal bearings is completely based on deterministic theoretical predictions. The deterministic approach ignores the probabilistic and random nature of input variables and consequently, poses an arbitrary tolerance or safety factor on the performance parameters. However, such arbitrary safety factors result in performance loss when the factor is very high or failure of the system when the factor is low. This paper presents a probabilistic approach for the design of a three-lobe journal bearing considering the uncertainty in geometric parameters such as clearance, preload, and offset factor. The Monte Carlo simulation (MCS) algorithm is used for the propagation of input uncertainties to the systems’ output. To increase the efficiency of computationally expensive MCS, the moving least square (MLS) method is used as a surrogate model. The training data of the surrogate model is obtained by solving the Reynolds equation, at selective design points, using the finite difference method. To explain the probabilistic response of the bearing for various applications and different operating conditions, the results are presented for long, short, and finite bearings at three different supply pressures considering three different eccentricity ratios. The results of the probabilistic analysis show a significant deviation of the system response from its deterministically predicted values and suggest safe design values for the reliable operation of a three-lobe bearing.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"17 1","pages":"1532 - 1547"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing asymmetric uncertain effect on symmetric three-lobe journal bearing\",\"authors\":\"B. Roy, L. Roy, S. Dey\",\"doi\":\"10.1177/13506501231165564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional design process of journal bearings is completely based on deterministic theoretical predictions. The deterministic approach ignores the probabilistic and random nature of input variables and consequently, poses an arbitrary tolerance or safety factor on the performance parameters. However, such arbitrary safety factors result in performance loss when the factor is very high or failure of the system when the factor is low. This paper presents a probabilistic approach for the design of a three-lobe journal bearing considering the uncertainty in geometric parameters such as clearance, preload, and offset factor. The Monte Carlo simulation (MCS) algorithm is used for the propagation of input uncertainties to the systems’ output. To increase the efficiency of computationally expensive MCS, the moving least square (MLS) method is used as a surrogate model. The training data of the surrogate model is obtained by solving the Reynolds equation, at selective design points, using the finite difference method. To explain the probabilistic response of the bearing for various applications and different operating conditions, the results are presented for long, short, and finite bearings at three different supply pressures considering three different eccentricity ratios. The results of the probabilistic analysis show a significant deviation of the system response from its deterministically predicted values and suggest safe design values for the reliable operation of a three-lobe bearing.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"17 1\",\"pages\":\"1532 - 1547\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231165564\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231165564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

滑动轴承的常规设计过程完全基于确定性的理论预测。确定性方法忽略了输入变量的概率性和随机性,因此对性能参数提出了任意容差或安全系数。然而,这种任意的安全系数在系数很高时会导致性能损失,在系数很低时会导致系统失效。本文提出了一种考虑间隙、预紧力和偏移系数等几何参数不确定性的三瓣滑动轴承的概率设计方法。蒙特卡罗模拟(MCS)算法用于将输入不确定性传播到系统的输出。为了提高计算量大的MCS的效率,采用移动最小二乘(MLS)方法作为代理模型。代理模型的训练数据是用有限差分法在选定的设计点上求解Reynolds方程得到的。为了解释轴承在各种应用和不同运行条件下的概率响应,给出了考虑三种不同偏心比的三种不同供应压力下的长、短和有限轴承的结果。概率分析结果表明,系统响应与其确定性预测值存在显著偏差,为三瓣轴承的可靠运行提供了安全设计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing asymmetric uncertain effect on symmetric three-lobe journal bearing
The conventional design process of journal bearings is completely based on deterministic theoretical predictions. The deterministic approach ignores the probabilistic and random nature of input variables and consequently, poses an arbitrary tolerance or safety factor on the performance parameters. However, such arbitrary safety factors result in performance loss when the factor is very high or failure of the system when the factor is low. This paper presents a probabilistic approach for the design of a three-lobe journal bearing considering the uncertainty in geometric parameters such as clearance, preload, and offset factor. The Monte Carlo simulation (MCS) algorithm is used for the propagation of input uncertainties to the systems’ output. To increase the efficiency of computationally expensive MCS, the moving least square (MLS) method is used as a surrogate model. The training data of the surrogate model is obtained by solving the Reynolds equation, at selective design points, using the finite difference method. To explain the probabilistic response of the bearing for various applications and different operating conditions, the results are presented for long, short, and finite bearings at three different supply pressures considering three different eccentricity ratios. The results of the probabilistic analysis show a significant deviation of the system response from its deterministically predicted values and suggest safe design values for the reliable operation of a three-lobe bearing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
5.00%
发文量
110
审稿时长
6.1 months
期刊介绍: The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications. "I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信