{"title":"对称三瓣滑动轴承的探测不对称不确定效应","authors":"B. Roy, L. Roy, S. Dey","doi":"10.1177/13506501231165564","DOIUrl":null,"url":null,"abstract":"The conventional design process of journal bearings is completely based on deterministic theoretical predictions. The deterministic approach ignores the probabilistic and random nature of input variables and consequently, poses an arbitrary tolerance or safety factor on the performance parameters. However, such arbitrary safety factors result in performance loss when the factor is very high or failure of the system when the factor is low. This paper presents a probabilistic approach for the design of a three-lobe journal bearing considering the uncertainty in geometric parameters such as clearance, preload, and offset factor. The Monte Carlo simulation (MCS) algorithm is used for the propagation of input uncertainties to the systems’ output. To increase the efficiency of computationally expensive MCS, the moving least square (MLS) method is used as a surrogate model. The training data of the surrogate model is obtained by solving the Reynolds equation, at selective design points, using the finite difference method. To explain the probabilistic response of the bearing for various applications and different operating conditions, the results are presented for long, short, and finite bearings at three different supply pressures considering three different eccentricity ratios. The results of the probabilistic analysis show a significant deviation of the system response from its deterministically predicted values and suggest safe design values for the reliable operation of a three-lobe bearing.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":"17 1","pages":"1532 - 1547"},"PeriodicalIF":1.6000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing asymmetric uncertain effect on symmetric three-lobe journal bearing\",\"authors\":\"B. Roy, L. Roy, S. Dey\",\"doi\":\"10.1177/13506501231165564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional design process of journal bearings is completely based on deterministic theoretical predictions. The deterministic approach ignores the probabilistic and random nature of input variables and consequently, poses an arbitrary tolerance or safety factor on the performance parameters. However, such arbitrary safety factors result in performance loss when the factor is very high or failure of the system when the factor is low. This paper presents a probabilistic approach for the design of a three-lobe journal bearing considering the uncertainty in geometric parameters such as clearance, preload, and offset factor. The Monte Carlo simulation (MCS) algorithm is used for the propagation of input uncertainties to the systems’ output. To increase the efficiency of computationally expensive MCS, the moving least square (MLS) method is used as a surrogate model. The training data of the surrogate model is obtained by solving the Reynolds equation, at selective design points, using the finite difference method. To explain the probabilistic response of the bearing for various applications and different operating conditions, the results are presented for long, short, and finite bearings at three different supply pressures considering three different eccentricity ratios. The results of the probabilistic analysis show a significant deviation of the system response from its deterministically predicted values and suggest safe design values for the reliable operation of a three-lobe bearing.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":\"17 1\",\"pages\":\"1532 - 1547\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231165564\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231165564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Probing asymmetric uncertain effect on symmetric three-lobe journal bearing
The conventional design process of journal bearings is completely based on deterministic theoretical predictions. The deterministic approach ignores the probabilistic and random nature of input variables and consequently, poses an arbitrary tolerance or safety factor on the performance parameters. However, such arbitrary safety factors result in performance loss when the factor is very high or failure of the system when the factor is low. This paper presents a probabilistic approach for the design of a three-lobe journal bearing considering the uncertainty in geometric parameters such as clearance, preload, and offset factor. The Monte Carlo simulation (MCS) algorithm is used for the propagation of input uncertainties to the systems’ output. To increase the efficiency of computationally expensive MCS, the moving least square (MLS) method is used as a surrogate model. The training data of the surrogate model is obtained by solving the Reynolds equation, at selective design points, using the finite difference method. To explain the probabilistic response of the bearing for various applications and different operating conditions, the results are presented for long, short, and finite bearings at three different supply pressures considering three different eccentricity ratios. The results of the probabilistic analysis show a significant deviation of the system response from its deterministically predicted values and suggest safe design values for the reliable operation of a three-lobe bearing.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).