三原子分子中几何量子速度极限的代数方法

H. Feng, Peng Li, X. Yue, Yujun Zheng
{"title":"三原子分子中几何量子速度极限的代数方法","authors":"H. Feng, Peng Li, X. Yue, Yujun Zheng","doi":"10.4208/JAMS.062016.081216A","DOIUrl":null,"url":null,"abstract":"The appropriate metric of quantum speed limit for the triatomic molecules is discussed using a generalized geometric approach. The researches show the quantum Fisher information metric is tighter than the Wigner-Yanase information metric in realistic molecular dynamical evolution. The quantum speed limit metric is related to the initial evolution state of molecules. PACS: 02.20.Sv, 03.67.-a, 33.15-e","PeriodicalId":15131,"journal":{"name":"Journal of Atomic and Molecular Sciences","volume":"22 1","pages":"207-212"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algebraic approach to geometric Quantum Speed Limits in triatomic molecules\",\"authors\":\"H. Feng, Peng Li, X. Yue, Yujun Zheng\",\"doi\":\"10.4208/JAMS.062016.081216A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The appropriate metric of quantum speed limit for the triatomic molecules is discussed using a generalized geometric approach. The researches show the quantum Fisher information metric is tighter than the Wigner-Yanase information metric in realistic molecular dynamical evolution. The quantum speed limit metric is related to the initial evolution state of molecules. PACS: 02.20.Sv, 03.67.-a, 33.15-e\",\"PeriodicalId\":15131,\"journal\":{\"name\":\"Journal of Atomic and Molecular Sciences\",\"volume\":\"22 1\",\"pages\":\"207-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atomic and Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/JAMS.062016.081216A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atomic and Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/JAMS.062016.081216A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用广义几何方法讨论了三原子分子量子速度极限的适当度量。研究表明,在现实分子动力学进化中,量子Fisher信息度量比Wigner-Yanase信息度量更严格。量子速度极限度量与分子的初始演化状态有关。pac: 02.20。Sv, 03.67。——33.15 - e
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algebraic approach to geometric Quantum Speed Limits in triatomic molecules
The appropriate metric of quantum speed limit for the triatomic molecules is discussed using a generalized geometric approach. The researches show the quantum Fisher information metric is tighter than the Wigner-Yanase information metric in realistic molecular dynamical evolution. The quantum speed limit metric is related to the initial evolution state of molecules. PACS: 02.20.Sv, 03.67.-a, 33.15-e
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atomic and Molecular Sciences
Journal of Atomic and Molecular Sciences PHYSICS, ATOMIC, MOLECULAR & CHEMICAL-
自引率
0.00%
发文量
1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信