{"title":"三原子分子中几何量子速度极限的代数方法","authors":"H. Feng, Peng Li, X. Yue, Yujun Zheng","doi":"10.4208/JAMS.062016.081216A","DOIUrl":null,"url":null,"abstract":"The appropriate metric of quantum speed limit for the triatomic molecules is discussed using a generalized geometric approach. The researches show the quantum Fisher information metric is tighter than the Wigner-Yanase information metric in realistic molecular dynamical evolution. The quantum speed limit metric is related to the initial evolution state of molecules. PACS: 02.20.Sv, 03.67.-a, 33.15-e","PeriodicalId":15131,"journal":{"name":"Journal of Atomic and Molecular Sciences","volume":"22 1","pages":"207-212"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Algebraic approach to geometric Quantum Speed Limits in triatomic molecules\",\"authors\":\"H. Feng, Peng Li, X. Yue, Yujun Zheng\",\"doi\":\"10.4208/JAMS.062016.081216A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The appropriate metric of quantum speed limit for the triatomic molecules is discussed using a generalized geometric approach. The researches show the quantum Fisher information metric is tighter than the Wigner-Yanase information metric in realistic molecular dynamical evolution. The quantum speed limit metric is related to the initial evolution state of molecules. PACS: 02.20.Sv, 03.67.-a, 33.15-e\",\"PeriodicalId\":15131,\"journal\":{\"name\":\"Journal of Atomic and Molecular Sciences\",\"volume\":\"22 1\",\"pages\":\"207-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atomic and Molecular Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4208/JAMS.062016.081216A\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atomic and Molecular Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/JAMS.062016.081216A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
用广义几何方法讨论了三原子分子量子速度极限的适当度量。研究表明,在现实分子动力学进化中,量子Fisher信息度量比Wigner-Yanase信息度量更严格。量子速度极限度量与分子的初始演化状态有关。pac: 02.20。Sv, 03.67。——33.15 - e
Algebraic approach to geometric Quantum Speed Limits in triatomic molecules
The appropriate metric of quantum speed limit for the triatomic molecules is discussed using a generalized geometric approach. The researches show the quantum Fisher information metric is tighter than the Wigner-Yanase information metric in realistic molecular dynamical evolution. The quantum speed limit metric is related to the initial evolution state of molecules. PACS: 02.20.Sv, 03.67.-a, 33.15-e