海森堡群上非线性分数子place方程的性质

IF 0.3 4区 数学 Q4 MATHEMATICS, APPLIED
Xin-Guang Yang and Shubin Wang sci
{"title":"海森堡群上非线性分数子place方程的性质","authors":"Xin-Guang Yang and Shubin Wang sci","doi":"10.4208/JPDE.V32.N1.5","DOIUrl":null,"url":null,"abstract":"The aim of the paper is to study properties of solutions to the nonlinear fractional subLaplace equations on the Heisenberg group. Based on the method of moving planes to the Heisenberg group, we prove the Liouville property of solutions on a half space and the symmetry and monotonicity of the solutions on the whole group respectively. AMS Subject Classifications: 35A01, 35J57, 35D99 Chinese Library Classifications: O175.2","PeriodicalId":43504,"journal":{"name":"Journal of Partial Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group\",\"authors\":\"Xin-Guang Yang and Shubin Wang sci\",\"doi\":\"10.4208/JPDE.V32.N1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the paper is to study properties of solutions to the nonlinear fractional subLaplace equations on the Heisenberg group. Based on the method of moving planes to the Heisenberg group, we prove the Liouville property of solutions on a half space and the symmetry and monotonicity of the solutions on the whole group respectively. AMS Subject Classifications: 35A01, 35J57, 35D99 Chinese Library Classifications: O175.2\",\"PeriodicalId\":43504,\"journal\":{\"name\":\"Journal of Partial Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Partial Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/JPDE.V32.N1.5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Partial Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/JPDE.V32.N1.5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究海森堡群上非线性分数阶子place方程解的性质。基于移动平面到Heisenberg群的方法,分别证明了半空间上解的Liouville性质和全群上解的对称性和单调性。AMS学科分类:35A01, 35J57, 35D99
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties for Nonlinear Fractional SubLaplace Equations on the Heisenberg Group
The aim of the paper is to study properties of solutions to the nonlinear fractional subLaplace equations on the Heisenberg group. Based on the method of moving planes to the Heisenberg group, we prove the Liouville property of solutions on a half space and the symmetry and monotonicity of the solutions on the whole group respectively. AMS Subject Classifications: 35A01, 35J57, 35D99 Chinese Library Classifications: O175.2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
551
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信