{"title":"Let-7家族mirna代表了人类癌症潜在的广谱治疗分子","authors":"J. Guan, S. Guo, M. Liu","doi":"10.4172/2157-7412.1000271","DOIUrl":null,"url":null,"abstract":"miRNAs are a class of small non-coding RNAs that modulate gene expression. Let-7 was first discovered in Caenorhabditis elegans and is one of the most extensively studied miRNAs. The human let-7 family contains 13 miRNAs. The expression of these miRNAs is decreased in most human cancers and contributes to carcinogenesis and progression. Thus, the let-7 family of miRNAs has attracted the attention of researchers in various fields. Exogenous let-7 restoration has been confirmed to show antitumor efficacy in many human cancers. Let-7 functions as a tumor suppressor by acting upon several multi-signaling pathways and multiple downstream target oncogenes that are involved in most human cancers. Let-7 shows potential for modulation of chemoresistance and radiation sensitivity in human cancers. miRNAs in the let-7 family represent potential broad-spectrum antitumor molecules for human cancer therapy, and miRNAs in this family have been studied intensively for their therapeutic potential. However, most previous studies have been limited to a single functional aspect or focused on a single effect in a particular type of cancer. Here, we review the latest research on let-7 and discuss its potential value as a broadspectrum antitumor molecule.","PeriodicalId":89584,"journal":{"name":"Journal of genetic syndromes & gene therapy","volume":"34 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Let-7 Family miRNAs Represent Potential Broad-Spectrum Therapeutic Molecules for Human Cancer\",\"authors\":\"J. Guan, S. Guo, M. Liu\",\"doi\":\"10.4172/2157-7412.1000271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"miRNAs are a class of small non-coding RNAs that modulate gene expression. Let-7 was first discovered in Caenorhabditis elegans and is one of the most extensively studied miRNAs. The human let-7 family contains 13 miRNAs. The expression of these miRNAs is decreased in most human cancers and contributes to carcinogenesis and progression. Thus, the let-7 family of miRNAs has attracted the attention of researchers in various fields. Exogenous let-7 restoration has been confirmed to show antitumor efficacy in many human cancers. Let-7 functions as a tumor suppressor by acting upon several multi-signaling pathways and multiple downstream target oncogenes that are involved in most human cancers. Let-7 shows potential for modulation of chemoresistance and radiation sensitivity in human cancers. miRNAs in the let-7 family represent potential broad-spectrum antitumor molecules for human cancer therapy, and miRNAs in this family have been studied intensively for their therapeutic potential. However, most previous studies have been limited to a single functional aspect or focused on a single effect in a particular type of cancer. Here, we review the latest research on let-7 and discuss its potential value as a broadspectrum antitumor molecule.\",\"PeriodicalId\":89584,\"journal\":{\"name\":\"Journal of genetic syndromes & gene therapy\",\"volume\":\"34 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of genetic syndromes & gene therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7412.1000271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of genetic syndromes & gene therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7412.1000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let-7 Family miRNAs Represent Potential Broad-Spectrum Therapeutic Molecules for Human Cancer
miRNAs are a class of small non-coding RNAs that modulate gene expression. Let-7 was first discovered in Caenorhabditis elegans and is one of the most extensively studied miRNAs. The human let-7 family contains 13 miRNAs. The expression of these miRNAs is decreased in most human cancers and contributes to carcinogenesis and progression. Thus, the let-7 family of miRNAs has attracted the attention of researchers in various fields. Exogenous let-7 restoration has been confirmed to show antitumor efficacy in many human cancers. Let-7 functions as a tumor suppressor by acting upon several multi-signaling pathways and multiple downstream target oncogenes that are involved in most human cancers. Let-7 shows potential for modulation of chemoresistance and radiation sensitivity in human cancers. miRNAs in the let-7 family represent potential broad-spectrum antitumor molecules for human cancer therapy, and miRNAs in this family have been studied intensively for their therapeutic potential. However, most previous studies have been limited to a single functional aspect or focused on a single effect in a particular type of cancer. Here, we review the latest research on let-7 and discuss its potential value as a broadspectrum antitumor molecule.