Robert A. Thacker, K. R. Jones, C. Myers, Hao Zheng
{"title":"用于验证网络物理系统的自动抽象","authors":"Robert A. Thacker, K. R. Jones, C. Myers, Hao Zheng","doi":"10.1145/1795194.1795197","DOIUrl":null,"url":null,"abstract":"Models of cyber-physical systems are inherently complex since they must represent hardware, software, and the physical environment. Formal verification of these models is often precluded by state explosion. Fortunately, many important properties may only depend upon a relatively small portion of the system being accurately modeled. This paper presents an automatic abstraction methodology that simplifies the model accordingly. Preliminary results on a fault-tolerant temperature sensor are encouraging.","PeriodicalId":6619,"journal":{"name":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","volume":"21 1","pages":"12-21"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":"{\"title\":\"Automatic abstraction for verification of cyber-physical systems\",\"authors\":\"Robert A. Thacker, K. R. Jones, C. Myers, Hao Zheng\",\"doi\":\"10.1145/1795194.1795197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models of cyber-physical systems are inherently complex since they must represent hardware, software, and the physical environment. Formal verification of these models is often precluded by state explosion. Fortunately, many important properties may only depend upon a relatively small portion of the system being accurately modeled. This paper presents an automatic abstraction methodology that simplifies the model accordingly. Preliminary results on a fault-tolerant temperature sensor are encouraging.\",\"PeriodicalId\":6619,\"journal\":{\"name\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"21 1\",\"pages\":\"12-21\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"70\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1795194.1795197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1795194.1795197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic abstraction for verification of cyber-physical systems
Models of cyber-physical systems are inherently complex since they must represent hardware, software, and the physical environment. Formal verification of these models is often precluded by state explosion. Fortunately, many important properties may only depend upon a relatively small portion of the system being accurately modeled. This paper presents an automatic abstraction methodology that simplifies the model accordingly. Preliminary results on a fault-tolerant temperature sensor are encouraging.