{"title":"可接受的类别和复杂性","authors":"Pietro Capovilla, C. Loeh, M. Moraschini","doi":"10.2140/agt.2022.22.1417","DOIUrl":null,"url":null,"abstract":"Amenable category is a variant of the Lusternik-Schnirelman category, based on covers by amenable open subsets. We study the monotonicity problem for degree-one maps and amenable category and the relation between amenable category and topological complexity.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Amenable category and complexity\",\"authors\":\"Pietro Capovilla, C. Loeh, M. Moraschini\",\"doi\":\"10.2140/agt.2022.22.1417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amenable category is a variant of the Lusternik-Schnirelman category, based on covers by amenable open subsets. We study the monotonicity problem for degree-one maps and amenable category and the relation between amenable category and topological complexity.\",\"PeriodicalId\":50826,\"journal\":{\"name\":\"Algebraic and Geometric Topology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebraic and Geometric Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/agt.2022.22.1417\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/agt.2022.22.1417","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Amenable category is a variant of the Lusternik-Schnirelman category, based on covers by amenable open subsets. We study the monotonicity problem for degree-one maps and amenable category and the relation between amenable category and topological complexity.