二分拉姆齐数b(C2m);C2n)

Rui Zhang, Yongqi Sun, A. Wu
{"title":"二分拉姆齐数b(C2m);C2n)","authors":"Rui Zhang, Yongqi Sun, A. Wu","doi":"10.5281/ZENODO.1335404","DOIUrl":null,"url":null,"abstract":"Given bipartite graphs H1 and H2, the bipartite Ramsey number b(H1;H2) is the smallest integer b such that any subgraph G of the complete bipartite graph Kb,b, either G contains a copy of H1 or its complement relative to Kb,b contains a copy of H2. It is known that b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14 and b(K3,3;K3,3) = 17. In this paper we study the case that both H1 and H2 are even cycles, prove that b(C2m;C2n) ≥ m + n − 1 for m = n, and b(C2m;C6) = m+ 2 for m ≥ 4. Keywords—bipartite graph; Ramsey number; even cycle","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"1 1","pages":"152-155"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"The Bipartite Ramsey Numbers b(C2m; C2n)\",\"authors\":\"Rui Zhang, Yongqi Sun, A. Wu\",\"doi\":\"10.5281/ZENODO.1335404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given bipartite graphs H1 and H2, the bipartite Ramsey number b(H1;H2) is the smallest integer b such that any subgraph G of the complete bipartite graph Kb,b, either G contains a copy of H1 or its complement relative to Kb,b contains a copy of H2. It is known that b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14 and b(K3,3;K3,3) = 17. In this paper we study the case that both H1 and H2 are even cycles, prove that b(C2m;C2n) ≥ m + n − 1 for m = n, and b(C2m;C6) = m+ 2 for m ≥ 4. Keywords—bipartite graph; Ramsey number; even cycle\",\"PeriodicalId\":23764,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"volume\":\"1 1\",\"pages\":\"152-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1335404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1335404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

给定二部图H1和H2,二部拉姆齐数b(H1;H2)是最小的整数b,使得完全二部图Kb,b的任何子图G, G包含H1的副本或其相对于Kb的补,b包含H2的副本。已知b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14, b(K3,3;K3,3) = 17。本文研究了H1和H2都是偶环的情况,证明了当m = n时b(C2m;C2n)≥m+ n - 1,当m≥4时b(C2m;C6) = m+ 2。Keywords-bipartite图;拉姆齐数量;即使是周期
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Bipartite Ramsey Numbers b(C2m; C2n)
Given bipartite graphs H1 and H2, the bipartite Ramsey number b(H1;H2) is the smallest integer b such that any subgraph G of the complete bipartite graph Kb,b, either G contains a copy of H1 or its complement relative to Kb,b contains a copy of H2. It is known that b(K2,2;K2,2) = 5, b(K2,3;K2,3) = 9, b(K2,4;K2,4) = 14 and b(K3,3;K3,3) = 17. In this paper we study the case that both H1 and H2 are even cycles, prove that b(C2m;C2n) ≥ m + n − 1 for m = n, and b(C2m;C6) = m+ 2 for m ≥ 4. Keywords—bipartite graph; Ramsey number; even cycle
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信