变换图Gxy+中的偏心连通性指标

IF 0.3 Q4 COMPUTER SCIENCE, THEORY & METHODS
A. Aytaç, Belgin Vatansever
{"title":"变换图Gxy+中的偏心连通性指标","authors":"A. Aytaç, Belgin Vatansever","doi":"10.2478/ausi-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a connected graph with vertex set V(G)and edge set E(G). The eccentric connectivity index of G is defined as ∑ν∈V(G)ec(ν) deg(ν) \\sum\\limits_{\\nu\\in{\\rm{V}}\\left({\\rm{G}}\\right)}{{\\rm{ec}}\\left(\\nu\\right)\\,{\\rm{deg}}\\left(\\nu\\right)} where ec(v) the eccentricity of a vertex v and deg(v)is its degree and denoted by ɛc(G). In this paper, we investigate the eccentric connectivity index of the transformation graph Gxy+.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"52 1","pages":"111 - 123"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eccentric connectivity index in transformation graph Gxy+\",\"authors\":\"A. Aytaç, Belgin Vatansever\",\"doi\":\"10.2478/ausi-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let G be a connected graph with vertex set V(G)and edge set E(G). The eccentric connectivity index of G is defined as ∑ν∈V(G)ec(ν) deg(ν) \\\\sum\\\\limits_{\\\\nu\\\\in{\\\\rm{V}}\\\\left({\\\\rm{G}}\\\\right)}{{\\\\rm{ec}}\\\\left(\\\\nu\\\\right)\\\\,{\\\\rm{deg}}\\\\left(\\\\nu\\\\right)} where ec(v) the eccentricity of a vertex v and deg(v)is its degree and denoted by ɛc(G). In this paper, we investigate the eccentric connectivity index of the transformation graph Gxy+.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"52 1\",\"pages\":\"111 - 123\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

摘要设G为顶点集V(G)、边集E(G)的连通图。G的偏心连度指标定义为∑ν∈V(G)ec(ν) deg(ν) \sum\limits{\nu\in{\rm{V}}\left ({\rm{G}}\right) }{{\rm{ec}}\left (\nu\right)\, {\rm{deg}}\left (\nu\right)}其中ec(V)为顶点V的偏心度,deg(V)为顶点V的度,用ec(G)表示。本文研究了变换图Gxy+的偏心连通性指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eccentric connectivity index in transformation graph Gxy+
Abstract Let G be a connected graph with vertex set V(G)and edge set E(G). The eccentric connectivity index of G is defined as ∑ν∈V(G)ec(ν) deg(ν) \sum\limits_{\nu\in{\rm{V}}\left({\rm{G}}\right)}{{\rm{ec}}\left(\nu\right)\,{\rm{deg}}\left(\nu\right)} where ec(v) the eccentricity of a vertex v and deg(v)is its degree and denoted by ɛc(G). In this paper, we investigate the eccentric connectivity index of the transformation graph Gxy+.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Universitatis Sapientiae Informatica
Acta Universitatis Sapientiae Informatica COMPUTER SCIENCE, THEORY & METHODS-
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信