{"title":"变换图Gxy+中的偏心连通性指标","authors":"A. Aytaç, Belgin Vatansever","doi":"10.2478/ausi-2023-0009","DOIUrl":null,"url":null,"abstract":"Abstract Let G be a connected graph with vertex set V(G)and edge set E(G). The eccentric connectivity index of G is defined as ∑ν∈V(G)ec(ν) deg(ν) \\sum\\limits_{\\nu\\in{\\rm{V}}\\left({\\rm{G}}\\right)}{{\\rm{ec}}\\left(\\nu\\right)\\,{\\rm{deg}}\\left(\\nu\\right)} where ec(v) the eccentricity of a vertex v and deg(v)is its degree and denoted by ɛc(G). In this paper, we investigate the eccentric connectivity index of the transformation graph Gxy+.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"52 1","pages":"111 - 123"},"PeriodicalIF":0.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eccentric connectivity index in transformation graph Gxy+\",\"authors\":\"A. Aytaç, Belgin Vatansever\",\"doi\":\"10.2478/ausi-2023-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let G be a connected graph with vertex set V(G)and edge set E(G). The eccentric connectivity index of G is defined as ∑ν∈V(G)ec(ν) deg(ν) \\\\sum\\\\limits_{\\\\nu\\\\in{\\\\rm{V}}\\\\left({\\\\rm{G}}\\\\right)}{{\\\\rm{ec}}\\\\left(\\\\nu\\\\right)\\\\,{\\\\rm{deg}}\\\\left(\\\\nu\\\\right)} where ec(v) the eccentricity of a vertex v and deg(v)is its degree and denoted by ɛc(G). In this paper, we investigate the eccentric connectivity index of the transformation graph Gxy+.\",\"PeriodicalId\":41480,\"journal\":{\"name\":\"Acta Universitatis Sapientiae Informatica\",\"volume\":\"52 1\",\"pages\":\"111 - 123\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Universitatis Sapientiae Informatica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausi-2023-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2023-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Eccentric connectivity index in transformation graph Gxy+
Abstract Let G be a connected graph with vertex set V(G)and edge set E(G). The eccentric connectivity index of G is defined as ∑ν∈V(G)ec(ν) deg(ν) \sum\limits_{\nu\in{\rm{V}}\left({\rm{G}}\right)}{{\rm{ec}}\left(\nu\right)\,{\rm{deg}}\left(\nu\right)} where ec(v) the eccentricity of a vertex v and deg(v)is its degree and denoted by ɛc(G). In this paper, we investigate the eccentric connectivity index of the transformation graph Gxy+.