从用户tweets中挖掘兴趣

Thuy Vu, V. Perez
{"title":"从用户tweets中挖掘兴趣","authors":"Thuy Vu, V. Perez","doi":"10.1145/2505515.2507883","DOIUrl":null,"url":null,"abstract":"We build a system to extract user interests from Twitter messages. Specifically, we extract interest candidates using linguistic patterns and rank them using four different keyphrase ranking techniques: TFIDF, TextRank, LDA-TextRank, and Relevance-Interestingness-Rank (RI-Rank). We also explore the complementary relation between TFIDF and TextRank in ranking interest candidates. Top ranked interests are evaluated with user feedback gathered from an online survey. The results show that TFIDF and TextRank are both suitable for extracting user interests from tweets. Moreover, the combination of TFIDF and TextRank consistently yields the highest user positive feedback.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Interest mining from user tweets\",\"authors\":\"Thuy Vu, V. Perez\",\"doi\":\"10.1145/2505515.2507883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build a system to extract user interests from Twitter messages. Specifically, we extract interest candidates using linguistic patterns and rank them using four different keyphrase ranking techniques: TFIDF, TextRank, LDA-TextRank, and Relevance-Interestingness-Rank (RI-Rank). We also explore the complementary relation between TFIDF and TextRank in ranking interest candidates. Top ranked interests are evaluated with user feedback gathered from an online survey. The results show that TFIDF and TextRank are both suitable for extracting user interests from tweets. Moreover, the combination of TFIDF and TextRank consistently yields the highest user positive feedback.\",\"PeriodicalId\":20528,\"journal\":{\"name\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM international conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2505515.2507883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2507883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们建立了一个从Twitter消息中提取用户兴趣的系统。具体来说,我们使用语言模式提取兴趣候选项,并使用四种不同的关键词排名技术对它们进行排名:TFIDF、TextRank、LDA-TextRank和relevance - interestiness - rank (RI-Rank)。我们还探讨了TFIDF和TextRank在兴趣候选人排名中的互补关系。排名靠前的兴趣是通过在线调查收集到的用户反馈来评估的。结果表明,TFIDF和TextRank都适合于从tweets中提取用户兴趣。此外,TFIDF和TextRank的结合始终产生最高的用户积极反馈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interest mining from user tweets
We build a system to extract user interests from Twitter messages. Specifically, we extract interest candidates using linguistic patterns and rank them using four different keyphrase ranking techniques: TFIDF, TextRank, LDA-TextRank, and Relevance-Interestingness-Rank (RI-Rank). We also explore the complementary relation between TFIDF and TextRank in ranking interest candidates. Top ranked interests are evaluated with user feedback gathered from an online survey. The results show that TFIDF and TextRank are both suitable for extracting user interests from tweets. Moreover, the combination of TFIDF and TextRank consistently yields the highest user positive feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信