{"title":"片上配电网同步开关噪声与谐振分析","authors":"G. Bai, I. Hajj","doi":"10.1109/ISQED.2002.996723","DOIUrl":null,"url":null,"abstract":"This paper presents a frequency-domain technique for finding the worst-case time-domain voltage variations in the RLC power bus of digital VLSI circuits. Pattern independent maximum envelope currents are used for the logic gates and macroblocks. The voltage drop/surge at a power bus node is expressed in term of the currents using sensitivity analysis. The sensitivity information together with an optimization procedure are applied to find the upper-bounds on the voltage variations at the targeted bus nodes. The resonance problem due to the on-chip RLC power distribution network is analyzed base on the frequency-domain sensitivity analysis. Comparisons to SPICE simulation of circuits extracted from layouts are used to validate our approach.","PeriodicalId":20510,"journal":{"name":"Proceedings International Symposium on Quality Electronic Design","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Simultaneous switching noise and resonance analysis of on-chip power distribution network\",\"authors\":\"G. Bai, I. Hajj\",\"doi\":\"10.1109/ISQED.2002.996723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a frequency-domain technique for finding the worst-case time-domain voltage variations in the RLC power bus of digital VLSI circuits. Pattern independent maximum envelope currents are used for the logic gates and macroblocks. The voltage drop/surge at a power bus node is expressed in term of the currents using sensitivity analysis. The sensitivity information together with an optimization procedure are applied to find the upper-bounds on the voltage variations at the targeted bus nodes. The resonance problem due to the on-chip RLC power distribution network is analyzed base on the frequency-domain sensitivity analysis. Comparisons to SPICE simulation of circuits extracted from layouts are used to validate our approach.\",\"PeriodicalId\":20510,\"journal\":{\"name\":\"Proceedings International Symposium on Quality Electronic Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Symposium on Quality Electronic Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2002.996723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Symposium on Quality Electronic Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2002.996723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simultaneous switching noise and resonance analysis of on-chip power distribution network
This paper presents a frequency-domain technique for finding the worst-case time-domain voltage variations in the RLC power bus of digital VLSI circuits. Pattern independent maximum envelope currents are used for the logic gates and macroblocks. The voltage drop/surge at a power bus node is expressed in term of the currents using sensitivity analysis. The sensitivity information together with an optimization procedure are applied to find the upper-bounds on the voltage variations at the targeted bus nodes. The resonance problem due to the on-chip RLC power distribution network is analyzed base on the frequency-domain sensitivity analysis. Comparisons to SPICE simulation of circuits extracted from layouts are used to validate our approach.