(2006- 09)伪连续半群中基于最小半群的泛积分的齐性

IF 1.9 4区 数学 Q1 MATHEMATICS
T. N. Luan, D. Hoang, T. M. Thuyet
{"title":"(2006- 09)伪连续半群中基于最小半群的泛积分的齐性","authors":"T. N. Luan, D. Hoang, T. M. Thuyet","doi":"10.22111/IJFS.2021.6144","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce the concept of pseudo-continuous semicopula. We show its relationship with continuity in the second variable and provide a characterization of all semicopulas S such that the smallest semicopula-based universal integral is S-homogeneous. This completely solves Open problem 2.29 proposed by J. Borzova-Molnarova et al. in the paper [2].","PeriodicalId":54920,"journal":{"name":"Iranian Journal of Fuzzy Systems","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"(2006-5941) On homogeneity of the smallest semicopula-based universal integral in the class of pseudo-continuous semicopulas\",\"authors\":\"T. N. Luan, D. Hoang, T. M. Thuyet\",\"doi\":\"10.22111/IJFS.2021.6144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce the concept of pseudo-continuous semicopula. We show its relationship with continuity in the second variable and provide a characterization of all semicopulas S such that the smallest semicopula-based universal integral is S-homogeneous. This completely solves Open problem 2.29 proposed by J. Borzova-Molnarova et al. in the paper [2].\",\"PeriodicalId\":54920,\"journal\":{\"name\":\"Iranian Journal of Fuzzy Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Fuzzy Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.6144\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Fuzzy Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.6144","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文引入了伪连续半聚的概念。我们在第二个变量中证明了它与连续性的关系,并给出了所有半群S的一个表征,使得最小的基于半群的普适积分是S齐次的。这完全解决了J. Borzova-Molnarova等人在[2]论文中提出的Open problem 2.29。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
(2006-5941) On homogeneity of the smallest semicopula-based universal integral in the class of pseudo-continuous semicopulas
In this paper, we introduce the concept of pseudo-continuous semicopula. We show its relationship with continuity in the second variable and provide a characterization of all semicopulas S such that the smallest semicopula-based universal integral is S-homogeneous. This completely solves Open problem 2.29 proposed by J. Borzova-Molnarova et al. in the paper [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
16.70%
发文量
0
期刊介绍: The two-monthly Iranian Journal of Fuzzy Systems (IJFS) aims to provide an international forum for refereed original research works in the theory and applications of fuzzy sets and systems in the areas of foundations, pure mathematics, artificial intelligence, control, robotics, data analysis, data mining, decision making, finance and management, information systems, operations research, pattern recognition and image processing, soft computing and uncertainty modeling. Manuscripts submitted to the IJFS must be original unpublished work and should not be in consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信