从声学单元发生模式中检测音频事件

Anurag Kumar, Pranay Dighe, Rita Singh, Sourish Chaudhuri, B. Raj
{"title":"从声学单元发生模式中检测音频事件","authors":"Anurag Kumar, Pranay Dighe, Rita Singh, Sourish Chaudhuri, B. Raj","doi":"10.1109/ICASSP.2012.6287923","DOIUrl":null,"url":null,"abstract":"In most real-world audio recordings, we encounter several types of audio events. In this paper, we develop a technique for detecting signature audio events, that is based on identifying patterns of occurrences of automatically learned atomic units of sound, which we call Acoustic Unit Descriptors or AUDs. Experiments show that the methodology works as well for detection of individual events and their boundaries in complex recordings.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"489-492"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Audio event detection from acoustic unit occurrence patterns\",\"authors\":\"Anurag Kumar, Pranay Dighe, Rita Singh, Sourish Chaudhuri, B. Raj\",\"doi\":\"10.1109/ICASSP.2012.6287923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In most real-world audio recordings, we encounter several types of audio events. In this paper, we develop a technique for detecting signature audio events, that is based on identifying patterns of occurrences of automatically learned atomic units of sound, which we call Acoustic Unit Descriptors or AUDs. Experiments show that the methodology works as well for detection of individual events and their boundaries in complex recordings.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"6 1\",\"pages\":\"489-492\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6287923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6287923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

在大多数真实世界的录音中,我们会遇到几种类型的音频事件。在本文中,我们开发了一种检测签名音频事件的技术,该技术基于识别自动学习的声音原子单元的出现模式,我们称之为声学单元描述符或aud。实验表明,该方法同样适用于复杂记录中单个事件及其边界的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audio event detection from acoustic unit occurrence patterns
In most real-world audio recordings, we encounter several types of audio events. In this paper, we develop a technique for detecting signature audio events, that is based on identifying patterns of occurrences of automatically learned atomic units of sound, which we call Acoustic Unit Descriptors or AUDs. Experiments show that the methodology works as well for detection of individual events and their boundaries in complex recordings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信