对JPEG失真图像的显著性自动预测

Anish Mittal, Anush K. Moorthy, A. Bovik, L. Cormack
{"title":"对JPEG失真图像的显著性自动预测","authors":"Anish Mittal, Anush K. Moorthy, A. Bovik, L. Cormack","doi":"10.1109/QoMEX.2011.6065702","DOIUrl":null,"url":null,"abstract":"We propose an algorithm to detect salient regions for JPEG distorted images for two tasks: quality assessment and free viewing. The algorithm extracts low-level features such as contrast, luminance, quality and so on and uses a machine-learning framework to predict salient regions in JPEG distorted images. We demonstrate that the automatically predicted regions-of-interest highly correlate with those from (human) ground truth saliency maps. Further, we evaluate the relevance of extracted low-level features for saliency prediction and analyze how incorporation of quality as a feature improves prediction performance as a function of the distortion severity. Applications of such a saliency prediction framework include developing novel pooling strategies for image quality assessment.","PeriodicalId":6441,"journal":{"name":"2011 Third International Workshop on Quality of Multimedia Experience","volume":"223 1","pages":"195-200"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Automatic prediction of saliency on JPEG distorted images\",\"authors\":\"Anish Mittal, Anush K. Moorthy, A. Bovik, L. Cormack\",\"doi\":\"10.1109/QoMEX.2011.6065702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an algorithm to detect salient regions for JPEG distorted images for two tasks: quality assessment and free viewing. The algorithm extracts low-level features such as contrast, luminance, quality and so on and uses a machine-learning framework to predict salient regions in JPEG distorted images. We demonstrate that the automatically predicted regions-of-interest highly correlate with those from (human) ground truth saliency maps. Further, we evaluate the relevance of extracted low-level features for saliency prediction and analyze how incorporation of quality as a feature improves prediction performance as a function of the distortion severity. Applications of such a saliency prediction framework include developing novel pooling strategies for image quality assessment.\",\"PeriodicalId\":6441,\"journal\":{\"name\":\"2011 Third International Workshop on Quality of Multimedia Experience\",\"volume\":\"223 1\",\"pages\":\"195-200\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third International Workshop on Quality of Multimedia Experience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QoMEX.2011.6065702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Workshop on Quality of Multimedia Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2011.6065702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

我们提出了一种检测JPEG失真图像显著区域的算法,用于两个任务:质量评估和自由观看。该算法提取对比度、亮度、质量等底层特征,并使用机器学习框架预测JPEG失真图像中的显著区域。我们证明了自动预测的兴趣区域与(人类)地面真值显著性地图高度相关。此外,我们评估了提取的低水平特征与显著性预测的相关性,并分析了如何将质量作为特征的结合作为失真严重程度的函数来提高预测性能。这种显著性预测框架的应用包括为图像质量评估开发新的池化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic prediction of saliency on JPEG distorted images
We propose an algorithm to detect salient regions for JPEG distorted images for two tasks: quality assessment and free viewing. The algorithm extracts low-level features such as contrast, luminance, quality and so on and uses a machine-learning framework to predict salient regions in JPEG distorted images. We demonstrate that the automatically predicted regions-of-interest highly correlate with those from (human) ground truth saliency maps. Further, we evaluate the relevance of extracted low-level features for saliency prediction and analyze how incorporation of quality as a feature improves prediction performance as a function of the distortion severity. Applications of such a saliency prediction framework include developing novel pooling strategies for image quality assessment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信