具有非闭偏序的可度量Lawson半拓扑半格

Q3 Mathematics
T. Banakh, S. Bardyla, A. Ravsky
{"title":"具有非闭偏序的可度量Lawson半拓扑半格","authors":"T. Banakh, S. Bardyla, A. Ravsky","doi":"10.15673/tmgc.v13i3.1756","DOIUrl":null,"url":null,"abstract":"We construct a metrizable Lawson semitopological semilattice $X$ whose partial order $\\le_X\\,=\\{(x,y)\\in X\\times X:xy=x\\}$ is not closed in $X\\times X$. This resolves a problem posed earlier by the authors.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A metrizable Lawson semitopological semilattice with non-closed partial order\",\"authors\":\"T. Banakh, S. Bardyla, A. Ravsky\",\"doi\":\"10.15673/tmgc.v13i3.1756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a metrizable Lawson semitopological semilattice $X$ whose partial order $\\\\le_X\\\\,=\\\\{(x,y)\\\\in X\\\\times X:xy=x\\\\}$ is not closed in $X\\\\times X$. This resolves a problem posed earlier by the authors.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v13i3.1756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v13i3.1756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

构造了一个可度量的Lawson半拓扑半格$X$,其偏阶$\le_X\,=\{(X,y)\在X\乘以X$中:xy= X\}$在X\乘以X$中不闭合。这解决了前面作者提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A metrizable Lawson semitopological semilattice with non-closed partial order
We construct a metrizable Lawson semitopological semilattice $X$ whose partial order $\le_X\,=\{(x,y)\in X\times X:xy=x\}$ is not closed in $X\times X$. This resolves a problem posed earlier by the authors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the International Geometry Center
Proceedings of the International Geometry Center Mathematics-Geometry and Topology
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信