{"title":"具有非闭偏序的可度量Lawson半拓扑半格","authors":"T. Banakh, S. Bardyla, A. Ravsky","doi":"10.15673/tmgc.v13i3.1756","DOIUrl":null,"url":null,"abstract":"We construct a metrizable Lawson semitopological semilattice $X$ whose partial order $\\le_X\\,=\\{(x,y)\\in X\\times X:xy=x\\}$ is not closed in $X\\times X$. This resolves a problem posed earlier by the authors.","PeriodicalId":36547,"journal":{"name":"Proceedings of the International Geometry Center","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A metrizable Lawson semitopological semilattice with non-closed partial order\",\"authors\":\"T. Banakh, S. Bardyla, A. Ravsky\",\"doi\":\"10.15673/tmgc.v13i3.1756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a metrizable Lawson semitopological semilattice $X$ whose partial order $\\\\le_X\\\\,=\\\\{(x,y)\\\\in X\\\\times X:xy=x\\\\}$ is not closed in $X\\\\times X$. This resolves a problem posed earlier by the authors.\",\"PeriodicalId\":36547,\"journal\":{\"name\":\"Proceedings of the International Geometry Center\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Geometry Center\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15673/tmgc.v13i3.1756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Geometry Center","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15673/tmgc.v13i3.1756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
A metrizable Lawson semitopological semilattice with non-closed partial order
We construct a metrizable Lawson semitopological semilattice $X$ whose partial order $\le_X\,=\{(x,y)\in X\times X:xy=x\}$ is not closed in $X\times X$. This resolves a problem posed earlier by the authors.