保持跟踪

Martin Schiegg, Philipp Hanslovsky, Bernhard X. Kausler, L. Hufnagel, F. Hamprecht
{"title":"保持跟踪","authors":"Martin Schiegg, Philipp Hanslovsky, Bernhard X. Kausler, L. Hufnagel, F. Hamprecht","doi":"10.1109/ICCV.2013.364","DOIUrl":null,"url":null,"abstract":"The quality of any tracking-by-assignment hinges on the accuracy of the foregoing target detection / segmentation step. In many kinds of images, errors in this first stage are unavoidable. These errors then propagate to, and corrupt, the tracking result. Our main contribution is the first probabilistic graphical model that can explicitly account for over- and under segmentation errors even when the number of tracking targets is unknown and when they may divide, as in cell cultures. The tracking model we present implements global consistency constraints for the number of targets comprised by each detection and is solved to global optimality on reasonably large 2D+t and 3D+t datasets. In addition, we empirically demonstrate the effectiveness of a post processing that allows to establish target identity even across occlusion / under segmentation. The usefulness and efficiency of this new tracking method is demonstrated on three different and challenging 2D+t and 3D+t datasets from developmental biology.","PeriodicalId":6351,"journal":{"name":"2013 IEEE International Conference on Computer Vision","volume":"32 1","pages":"2928-2935"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":"{\"title\":\"Conservation Tracking\",\"authors\":\"Martin Schiegg, Philipp Hanslovsky, Bernhard X. Kausler, L. Hufnagel, F. Hamprecht\",\"doi\":\"10.1109/ICCV.2013.364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality of any tracking-by-assignment hinges on the accuracy of the foregoing target detection / segmentation step. In many kinds of images, errors in this first stage are unavoidable. These errors then propagate to, and corrupt, the tracking result. Our main contribution is the first probabilistic graphical model that can explicitly account for over- and under segmentation errors even when the number of tracking targets is unknown and when they may divide, as in cell cultures. The tracking model we present implements global consistency constraints for the number of targets comprised by each detection and is solved to global optimality on reasonably large 2D+t and 3D+t datasets. In addition, we empirically demonstrate the effectiveness of a post processing that allows to establish target identity even across occlusion / under segmentation. The usefulness and efficiency of this new tracking method is demonstrated on three different and challenging 2D+t and 3D+t datasets from developmental biology.\",\"PeriodicalId\":6351,\"journal\":{\"name\":\"2013 IEEE International Conference on Computer Vision\",\"volume\":\"32 1\",\"pages\":\"2928-2935\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"63\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2013.364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2013.364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

摘要

任何分配跟踪的质量都取决于上述目标检测/分割步骤的准确性。在许多种类的图像中,这一阶段的错误是不可避免的。然后,这些错误会传播并破坏跟踪结果。我们的主要贡献是第一个概率图形模型,它可以明确地解释分割过度和分割不足的错误,即使在跟踪目标的数量未知以及它们可能分裂的情况下,如在细胞培养中。我们提出的跟踪模型实现了对每个检测组成的目标数量的全局一致性约束,并在相当大的2D+t和3D+t数据集上求解全局最优性。此外,我们通过经验证明了后处理的有效性,即使在遮挡/分割下也可以建立目标身份。这种新的跟踪方法的有效性和效率在发育生物学的三个不同的和具有挑战性的2D+t和3D+t数据集上得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conservation Tracking
The quality of any tracking-by-assignment hinges on the accuracy of the foregoing target detection / segmentation step. In many kinds of images, errors in this first stage are unavoidable. These errors then propagate to, and corrupt, the tracking result. Our main contribution is the first probabilistic graphical model that can explicitly account for over- and under segmentation errors even when the number of tracking targets is unknown and when they may divide, as in cell cultures. The tracking model we present implements global consistency constraints for the number of targets comprised by each detection and is solved to global optimality on reasonably large 2D+t and 3D+t datasets. In addition, we empirically demonstrate the effectiveness of a post processing that allows to establish target identity even across occlusion / under segmentation. The usefulness and efficiency of this new tracking method is demonstrated on three different and challenging 2D+t and 3D+t datasets from developmental biology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信