条件无关多元有限混合模型的半参数估计

IF 11 Q1 STATISTICS & PROBABILITY
D. Chauveau, D. Hunter, M. Levine
{"title":"条件无关多元有限混合模型的半参数估计","authors":"D. Chauveau, D. Hunter, M. Levine","doi":"10.1214/15-SS108","DOIUrl":null,"url":null,"abstract":"The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets.","PeriodicalId":46627,"journal":{"name":"Statistics Surveys","volume":"1 1","pages":"1-31"},"PeriodicalIF":11.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Semi-Parametric Estimation for Conditional Independence Multivariate Finite Mixture Models\",\"authors\":\"D. Chauveau, D. Hunter, M. Levine\",\"doi\":\"10.1214/15-SS108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets.\",\"PeriodicalId\":46627,\"journal\":{\"name\":\"Statistics Surveys\",\"volume\":\"1 1\",\"pages\":\"1-31\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/15-SS108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/15-SS108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 26

摘要

非参数多元有限混合模型的条件独立假设,是众所周知的纵向数据随机效应模型条件独立假设的较弱形式,是统计文献中越来越多的理论和算法发展的主题。在对这些文献进行综述之后,包括对所有重要的可辨识性结果的深入讨论,本文描述并扩展了用于估计这些模型中参数的算法。该算法适用于三维或三维以上的任意数量的组件。它具有下降属性,可以很容易地适应数据分组在条件独立变量块中的情况。我们讨论了如何使该算法适用于连接组件密度的各种位置尺度模型,我们甚至将其适用于假设组件对称的单变量混合问题的特定类别。给出了算法的带宽选择过程。最后,我们使用模拟研究和两个心理测量数据集证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-Parametric Estimation for Conditional Independence Multivariate Finite Mixture Models
The conditional independence assumption for nonparametric multivariate finite mixture models, a weaker form of the well-known conditional independence assumption for random effects models for longitudinal data, is the subject of an increasing number of theoretical and algorithmic developments in the statistical literature. After presenting a survey of this literature, including an in-depth discussion of the all-important identifiability results, this article describes and extends an algorithm for estimation of the parameters in these models. The algorithm works for any number of components in three or more dimensions. It possesses a descent property and can be easily adapted to situations where the data are grouped in blocks of conditionally independent variables. We discuss how to adapt this algorithm to various location-scale models that link component densities, and we even adapt it to a particular class of univariate mixture problems in which the components are assumed symmetric. We give a bandwidth selection procedure for our algorithm. Finally, we demonstrate the effectiveness of our algorithm using a simulation study and two psychometric datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics Surveys
Statistics Surveys STATISTICS & PROBABILITY-
CiteScore
11.70
自引率
0.00%
发文量
5
期刊介绍: Statistics Surveys publishes survey articles in theoretical, computational, and applied statistics. The style of articles may range from reviews of recent research to graduate textbook exposition. Articles may be broad or narrow in scope. The essential requirements are a well specified topic and target audience, together with clear exposition. Statistics Surveys is sponsored by the American Statistical Association, the Bernoulli Society, the Institute of Mathematical Statistics, and by the Statistical Society of Canada.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信