边缘和中心云计算与无线MIMO回程的协同作用

Xiaoyan Hu, Lifeng Wang, Kai‐Kit Wong, M. Tao, Yangyang Zhang, Zhongbin Zheng
{"title":"边缘和中心云计算与无线MIMO回程的协同作用","authors":"Xiaoyan Hu, Lifeng Wang, Kai‐Kit Wong, M. Tao, Yangyang Zhang, Zhongbin Zheng","doi":"10.1109/GLOBECOM38437.2019.9014044","DOIUrl":null,"url":null,"abstract":"In this paper, the synergy of combining the edge and central cloud computing is studied in heterogeneous cellular networks (HetNets). Multi-antenna small base stations (SBSs) equipped with edge cloud servers offer computing services for user equipment (UEs) proximally, whereas a macro base station (MBS) provides central cloud computing services for UEs via wireless multiple-input multiple-output (MIMO) backhaul allocated to their associated SBSs. With task processing latency constraints for UEs, the network energy consumption is minimized through jointly optimizing the cloud selection, the UEs' transmit powers, the SBSs' receive beamformers, and the SBSs' transmit covariance matrices. A mixed integer and non-convex optimization problem is formulated, and a decomposition algorithm is proposed to obtain a tractable solution iteratively. The simulation results confirm that great performance improvement can be achieved compared with the traditional scheme with central cloud computing only.","PeriodicalId":6868,"journal":{"name":"2019 IEEE Global Communications Conference (GLOBECOM)","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Synergy of Edge and Central Cloud Computing with Wireless MIMO Backhaul\",\"authors\":\"Xiaoyan Hu, Lifeng Wang, Kai‐Kit Wong, M. Tao, Yangyang Zhang, Zhongbin Zheng\",\"doi\":\"10.1109/GLOBECOM38437.2019.9014044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the synergy of combining the edge and central cloud computing is studied in heterogeneous cellular networks (HetNets). Multi-antenna small base stations (SBSs) equipped with edge cloud servers offer computing services for user equipment (UEs) proximally, whereas a macro base station (MBS) provides central cloud computing services for UEs via wireless multiple-input multiple-output (MIMO) backhaul allocated to their associated SBSs. With task processing latency constraints for UEs, the network energy consumption is minimized through jointly optimizing the cloud selection, the UEs' transmit powers, the SBSs' receive beamformers, and the SBSs' transmit covariance matrices. A mixed integer and non-convex optimization problem is formulated, and a decomposition algorithm is proposed to obtain a tractable solution iteratively. The simulation results confirm that great performance improvement can be achieved compared with the traditional scheme with central cloud computing only.\",\"PeriodicalId\":6868,\"journal\":{\"name\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"volume\":\"4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Communications Conference (GLOBECOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM38437.2019.9014044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Communications Conference (GLOBECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM38437.2019.9014044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了异构蜂窝网络(HetNets)中边缘和中心云计算的协同作用。配备边缘云服务器的多天线小型基站(SBSs)为近端用户设备(ue)提供计算服务,而宏基站(MBS)通过分配给相关SBSs的无线多输入多输出(MIMO)回程为终端提供中心云计算服务。在终端任务处理时延约束下,通过联合优化云选择、终端发射功率、SBSs接收波束形成和SBSs发射协方差矩阵,实现网络能耗最小化。提出了一个混合整数和非凸优化问题,并提出了一种迭代求解的分解算法。仿真结果表明,与仅采用中央云计算的传统方案相比,该方案的性能有很大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Synergy of Edge and Central Cloud Computing with Wireless MIMO Backhaul
In this paper, the synergy of combining the edge and central cloud computing is studied in heterogeneous cellular networks (HetNets). Multi-antenna small base stations (SBSs) equipped with edge cloud servers offer computing services for user equipment (UEs) proximally, whereas a macro base station (MBS) provides central cloud computing services for UEs via wireless multiple-input multiple-output (MIMO) backhaul allocated to their associated SBSs. With task processing latency constraints for UEs, the network energy consumption is minimized through jointly optimizing the cloud selection, the UEs' transmit powers, the SBSs' receive beamformers, and the SBSs' transmit covariance matrices. A mixed integer and non-convex optimization problem is formulated, and a decomposition algorithm is proposed to obtain a tractable solution iteratively. The simulation results confirm that great performance improvement can be achieved compared with the traditional scheme with central cloud computing only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信