本地波动率模型下的短期远期启动亚洲期权

Q3 Mathematics
D. Pirjol, Jing Wang, Lingjiong Zhu
{"title":"本地波动率模型下的短期远期启动亚洲期权","authors":"D. Pirjol, Jing Wang, Lingjiong Zhu","doi":"10.1080/1350486X.2019.1584533","DOIUrl":null,"url":null,"abstract":"ABSTRACT We study the short maturity asymptotics for prices of forward start Asian options under the assumption that the underlying asset follows a local volatility model. We obtain asymptotics for the cases of out-of-the-money, in-the-money, and at-the-money, considering both fixed strike and floating Asian options. The exponential decay of the price of an out-of-the-money forward start Asian option is handled using large deviations theory, and is controlled by a rate function which is given by a double-layer optimization problem. In the Black-Scholes model, the calculation of the rate function is simplified further to the solution of a non-linear equation. We obtain closed form for the rate function, as well as its asymptotic behavior when the strike is extremely large, small, or close to the initial price of the underlying asset.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"4 1","pages":"187 - 221"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Short Maturity Forward Start Asian Options in Local Volatility Models\",\"authors\":\"D. Pirjol, Jing Wang, Lingjiong Zhu\",\"doi\":\"10.1080/1350486X.2019.1584533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We study the short maturity asymptotics for prices of forward start Asian options under the assumption that the underlying asset follows a local volatility model. We obtain asymptotics for the cases of out-of-the-money, in-the-money, and at-the-money, considering both fixed strike and floating Asian options. The exponential decay of the price of an out-of-the-money forward start Asian option is handled using large deviations theory, and is controlled by a rate function which is given by a double-layer optimization problem. In the Black-Scholes model, the calculation of the rate function is simplified further to the solution of a non-linear equation. We obtain closed form for the rate function, as well as its asymptotic behavior when the strike is extremely large, small, or close to the initial price of the underlying asset.\",\"PeriodicalId\":35818,\"journal\":{\"name\":\"Applied Mathematical Finance\",\"volume\":\"4 1\",\"pages\":\"187 - 221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1350486X.2019.1584533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2019.1584533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

摘要在标的资产服从局部波动率模型的假设下,研究远期亚洲期权价格的短期渐近性。我们在考虑固定走权和浮动亚洲期权的情况下,得到了价外、价内和价内的渐近性。采用大偏差理论处理超值远期亚洲期权价格的指数衰减问题,并采用双层优化问题给出的速率函数进行控制。在Black-Scholes模型中,速率函数的计算进一步简化为非线性方程的求解。我们得到了利率函数的封闭形式,以及当行权极大、极小或接近标的资产的初始价格时的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Short Maturity Forward Start Asian Options in Local Volatility Models
ABSTRACT We study the short maturity asymptotics for prices of forward start Asian options under the assumption that the underlying asset follows a local volatility model. We obtain asymptotics for the cases of out-of-the-money, in-the-money, and at-the-money, considering both fixed strike and floating Asian options. The exponential decay of the price of an out-of-the-money forward start Asian option is handled using large deviations theory, and is controlled by a rate function which is given by a double-layer optimization problem. In the Black-Scholes model, the calculation of the rate function is simplified further to the solution of a non-linear equation. We obtain closed form for the rate function, as well as its asymptotic behavior when the strike is extremely large, small, or close to the initial price of the underlying asset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematical Finance
Applied Mathematical Finance Economics, Econometrics and Finance-Finance
CiteScore
2.30
自引率
0.00%
发文量
6
期刊介绍: The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信