求解当前矩阵乘法时间下的线性程序

Michael B. Cohen, Y. Lee, Zhao Song
{"title":"求解当前矩阵乘法时间下的线性程序","authors":"Michael B. Cohen, Y. Lee, Zhao Song","doi":"10.1145/3424305","DOIUrl":null,"url":null,"abstract":"This article shows how to solve linear programs of the form minAx=b,x≥ 0 c⊤ x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log (n/δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O*(nω log (n/δ)) time. When ω = 2, our algorithm takes O*(n2+1/6 log (n/δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ WA⊤ (AWA⊤)−1A√ W in sub-quadratic time under \\ell2 multiplicative changes in the diagonal matrix W.","PeriodicalId":17199,"journal":{"name":"Journal of the ACM (JACM)","volume":"1 1","pages":"1 - 39"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Solving Linear Programs in the Current Matrix Multiplication Time\",\"authors\":\"Michael B. Cohen, Y. Lee, Zhao Song\",\"doi\":\"10.1145/3424305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article shows how to solve linear programs of the form minAx=b,x≥ 0 c⊤ x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log (n/δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O*(nω log (n/δ)) time. When ω = 2, our algorithm takes O*(n2+1/6 log (n/δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ WA⊤ (AWA⊤)−1A√ W in sub-quadratic time under \\\\ell2 multiplicative changes in the diagonal matrix W.\",\"PeriodicalId\":17199,\"journal\":{\"name\":\"Journal of the ACM (JACM)\",\"volume\":\"1 1\",\"pages\":\"1 - 39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the ACM (JACM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3424305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM (JACM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3424305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

本文给出了在时间为O*((nω+n2.5 - α/2+n2+1/6) log (n/δ))的情况下,如何求解形式为minAx=b,x≥0 c∞x有n个变量的线性规划,其中ω为矩阵乘法的指数,α为矩阵乘法的对偶指数,δ为相对精度。对于ω δ 2.37和α δ 0.31的电流值,我们的算法需要O*(nω log (n/δ))时间。当ω = 2时,我们的算法需要O*(n2+1/6 log (n/δ))时间。我们的算法利用了几个我们认为可能独立感兴趣的新概念:•我们定义了一个随机中心路径方法。•我们展示了如何在对角矩阵W的\ell2乘法变化下,在次二次时间内维持一个投影矩阵√WA∈(AWA∈)−1A∈W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving Linear Programs in the Current Matrix Multiplication Time
This article shows how to solve linear programs of the form minAx=b,x≥ 0 c⊤ x with n variables in time O*((nω+n2.5−α/2+n2+1/6) log (n/δ)), where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication, and δ is the relative accuracy. For the current value of ω δ 2.37 and α δ 0.31, our algorithm takes O*(nω log (n/δ)) time. When ω = 2, our algorithm takes O*(n2+1/6 log (n/δ)) time. Our algorithm utilizes several new concepts that we believe may be of independent interest: • We define a stochastic central path method. • We show how to maintain a projection matrix √ WA⊤ (AWA⊤)−1A√ W in sub-quadratic time under \ell2 multiplicative changes in the diagonal matrix W.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信