二阶椭圆方程的杂化不连续伽辽金法的超收敛性

IF 0.3 Q4 MATHEMATICS, APPLIED
Minam Moon, Yang Hwan Lim
{"title":"二阶椭圆方程的杂化不连续伽辽金法的超收敛性","authors":"Minam Moon, Yang Hwan Lim","doi":"10.12941/JKSIAM.2016.20.295","DOIUrl":null,"url":null,"abstract":"A BSTRACT . We propose a projection-based analysis of a new hybridizable discontinuous Galerkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses L 2 − projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p +1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"22 1","pages":"295-308"},"PeriodicalIF":0.3000,"publicationDate":"2016-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS\",\"authors\":\"Minam Moon, Yang Hwan Lim\",\"doi\":\"10.12941/JKSIAM.2016.20.295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A BSTRACT . We propose a projection-based analysis of a new hybridizable discontinuous Galerkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses L 2 − projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p +1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"22 1\",\"pages\":\"295-308\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2016.20.295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2016.20.295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要。提出了一种新的二阶椭圆方程的可杂化不连续Galerkin方法的投影分析方法。与标准HDG方法相比,该方法具有更高的阶精度和更低的计算成本,并且具有更大的灵活性。与标准HDG方法相比,我们的新方法的显著区别在于,我们的方法使用l2 -投影和合适的稳定参数,这取决于超收敛的网格大小。我们证明了当我们只使用p +1次多项式作为没有后处理的有限元空间时,方程解的误差收敛于p + 2阶。在建立理论基础上,通过数值试验验证了该方法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUPERCONVERGENCE OF HYBRIDIZABLE DISCONTINUOUS GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC EQUATIONS
A BSTRACT . We propose a projection-based analysis of a new hybridizable discontinuous Galerkin method for second order elliptic equations. The method is more advantageous than the standard HDG method in a sense that the new method has higher-order accuracy and lower computational cost, and is more flexible. Notable distinctions of our new method, when compared to the standard HDG emthod, are that our method uses L 2 − projection and suitable stabilization parameter depending on a mesh size for superconvergence. We show that the error for the solution of the equation converges with order p + 2 when we only use polynomials of degree p +1 as a finite element space without postprocessing. After establishing the theory, we carry out numerical tests to demonstrate and ensure that the proposed method is effective and accurate in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信