Abuzar Shakeri, E. Heidari, Nasrin Hosseini Motlagh, H. Vanaie
{"title":"重离子束辐照含泡沫球形燃料囊聚变反应堆沉积能量增益的建模与仿真","authors":"Abuzar Shakeri, E. Heidari, Nasrin Hosseini Motlagh, H. Vanaie","doi":"10.1515/kern-2022-0098","DOIUrl":null,"url":null,"abstract":"Abstract In heavy ion fusion using the inertial confinement fusion (ICF) approach, firstly, the deposited energy of heavy ions in the target and, secondly, the charged products resulting from fusion reactions in the plasma of the fuel capsule are key and necessary points. In this paper, we used the ICF method for the core of a spherical fusion reactor simulation filled with multi-layer fuel capsules with foam using symmetrical irradiation from 32 different directions by two heavy ion beams of Cs and Pb with radiation energies of 8 and 10 GeV, respectively. Then we simulated the process of penetration and deposited energy of the beams inside the core of this reactor using GEANT4 code. The results of our simulations show that if the atomic number of radiation beams increases, the amount of beam stopping power increases, which is in agreement with existing theories. Also, by changing parameters such as the type and energy amount of the radiation beam, thickness, and the type of material selected in the layers of the desired fuel capsules, the amount of the penetration depth, the produced secondary particles, the stopping power per unit volume of fuel capsule and the reactor core will change. Eventually, these variations will cause a change in deposited energy gain inside the core of a spherical fusion reactor. The obtained maximum deposited energy due to the two selective Pb+ and Cs+ beams with 8 and 10 GeV energies in this study is related to DT fuel compared to the two neutron free-fuels of D3He and P11B. It can be seen that energy gain increases significantly with changing beam energy from 8 to 10 GeV, but for both selected energy, the enhancement of DT energy gain compared to D3He and P11B is not so significant.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"23 1","pages":"370 - 382"},"PeriodicalIF":0.4000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and simulation of deposited energy gain via irradiation of heavy ion beams on the fusion reactor contains spherical fuel capsules with foam\",\"authors\":\"Abuzar Shakeri, E. Heidari, Nasrin Hosseini Motlagh, H. Vanaie\",\"doi\":\"10.1515/kern-2022-0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In heavy ion fusion using the inertial confinement fusion (ICF) approach, firstly, the deposited energy of heavy ions in the target and, secondly, the charged products resulting from fusion reactions in the plasma of the fuel capsule are key and necessary points. In this paper, we used the ICF method for the core of a spherical fusion reactor simulation filled with multi-layer fuel capsules with foam using symmetrical irradiation from 32 different directions by two heavy ion beams of Cs and Pb with radiation energies of 8 and 10 GeV, respectively. Then we simulated the process of penetration and deposited energy of the beams inside the core of this reactor using GEANT4 code. The results of our simulations show that if the atomic number of radiation beams increases, the amount of beam stopping power increases, which is in agreement with existing theories. Also, by changing parameters such as the type and energy amount of the radiation beam, thickness, and the type of material selected in the layers of the desired fuel capsules, the amount of the penetration depth, the produced secondary particles, the stopping power per unit volume of fuel capsule and the reactor core will change. Eventually, these variations will cause a change in deposited energy gain inside the core of a spherical fusion reactor. The obtained maximum deposited energy due to the two selective Pb+ and Cs+ beams with 8 and 10 GeV energies in this study is related to DT fuel compared to the two neutron free-fuels of D3He and P11B. It can be seen that energy gain increases significantly with changing beam energy from 8 to 10 GeV, but for both selected energy, the enhancement of DT energy gain compared to D3He and P11B is not so significant.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"23 1\",\"pages\":\"370 - 382\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2022-0098\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Modeling and simulation of deposited energy gain via irradiation of heavy ion beams on the fusion reactor contains spherical fuel capsules with foam
Abstract In heavy ion fusion using the inertial confinement fusion (ICF) approach, firstly, the deposited energy of heavy ions in the target and, secondly, the charged products resulting from fusion reactions in the plasma of the fuel capsule are key and necessary points. In this paper, we used the ICF method for the core of a spherical fusion reactor simulation filled with multi-layer fuel capsules with foam using symmetrical irradiation from 32 different directions by two heavy ion beams of Cs and Pb with radiation energies of 8 and 10 GeV, respectively. Then we simulated the process of penetration and deposited energy of the beams inside the core of this reactor using GEANT4 code. The results of our simulations show that if the atomic number of radiation beams increases, the amount of beam stopping power increases, which is in agreement with existing theories. Also, by changing parameters such as the type and energy amount of the radiation beam, thickness, and the type of material selected in the layers of the desired fuel capsules, the amount of the penetration depth, the produced secondary particles, the stopping power per unit volume of fuel capsule and the reactor core will change. Eventually, these variations will cause a change in deposited energy gain inside the core of a spherical fusion reactor. The obtained maximum deposited energy due to the two selective Pb+ and Cs+ beams with 8 and 10 GeV energies in this study is related to DT fuel compared to the two neutron free-fuels of D3He and P11B. It can be seen that energy gain increases significantly with changing beam energy from 8 to 10 GeV, but for both selected energy, the enhancement of DT energy gain compared to D3He and P11B is not so significant.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).