S. Kim, Dongkwun Kim, Y. Pu, Chunlei Shi, Mingoo Seok
{"title":"一种支持大数字负载的0.5-1V输入事件驱动多数字低压差稳压系统","authors":"S. Kim, Dongkwun Kim, Y. Pu, Chunlei Shi, Mingoo Seok","doi":"10.23919/VLSIC.2019.8778117","DOIUrl":null,"url":null,"abstract":"Recent digital low-dropout regulators have demonstrated competitive load regulation performance for a digital load even with a low input voltage. However, few existing regulator designs have investigated into supporting a spatially large load with realistic grid parasitics. This paper presents a system consisting of nine digital low-drop-out regulators based on event-driven control for better supporting such load. At 0.5V (1V) input, our prototype improves the load regulation FoM by 3.9X (9.1X) and current density by 8.7X (2.8X) over the prior state of the arts [1, 3, 4].","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"48 1","pages":"C128-C129"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A 0.5-1V Input Event-Driven Multiple Digital Low-Dropout-Regulator System for Supporting a Large Digital Load\",\"authors\":\"S. Kim, Dongkwun Kim, Y. Pu, Chunlei Shi, Mingoo Seok\",\"doi\":\"10.23919/VLSIC.2019.8778117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent digital low-dropout regulators have demonstrated competitive load regulation performance for a digital load even with a low input voltage. However, few existing regulator designs have investigated into supporting a spatially large load with realistic grid parasitics. This paper presents a system consisting of nine digital low-drop-out regulators based on event-driven control for better supporting such load. At 0.5V (1V) input, our prototype improves the load regulation FoM by 3.9X (9.1X) and current density by 8.7X (2.8X) over the prior state of the arts [1, 3, 4].\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"48 1\",\"pages\":\"C128-C129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8778117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 0.5-1V Input Event-Driven Multiple Digital Low-Dropout-Regulator System for Supporting a Large Digital Load
Recent digital low-dropout regulators have demonstrated competitive load regulation performance for a digital load even with a low input voltage. However, few existing regulator designs have investigated into supporting a spatially large load with realistic grid parasitics. This paper presents a system consisting of nine digital low-drop-out regulators based on event-driven control for better supporting such load. At 0.5V (1V) input, our prototype improves the load regulation FoM by 3.9X (9.1X) and current density by 8.7X (2.8X) over the prior state of the arts [1, 3, 4].