数据挖掘分类技术——在心血管疾病预测中提高准确性的比较

Q4 Mathematics
Richa Sharma, S. Singh, Sujata Khatri
{"title":"数据挖掘分类技术——在心血管疾病预测中提高准确性的比较","authors":"Richa Sharma, S. Singh, Sujata Khatri","doi":"10.1504/ijdats.2019.103756","DOIUrl":null,"url":null,"abstract":"Cardiovascular disease is a broad term which includes stroke or any disorder in the cardiovascular system that has the heart at its centre. This disease is a critical cause of mortality every year across the globe. Data mining utilises a variety of techniques and algorithms that could help to draw some interesting conclusions about cardiovascular disease. Data mining in healthcare can assist in predicting disease. This study aims to gain knowledge from a heart disease dataset and analyse several data mining classification techniques seeking improved accuracy and a lesser error rate in the results. The data set for the experiment is chosen from the UCI machine learning repository database. The dataset is analysed using two different data mining tools, i.e., WEKA and Tanagra. The analysis was done using the 10 fold cross validation technique. The results show that the Naive Bayes algorithm and the C-PLS algorithm outperform others with an accuracy of 83.71% and 84.44% respectively.","PeriodicalId":38582,"journal":{"name":"International Journal of Data Analysis Techniques and Strategies","volume":"26 1","pages":"356-373"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Data mining classification techniques - comparison for better accuracy in prediction of cardiovascular disease\",\"authors\":\"Richa Sharma, S. Singh, Sujata Khatri\",\"doi\":\"10.1504/ijdats.2019.103756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular disease is a broad term which includes stroke or any disorder in the cardiovascular system that has the heart at its centre. This disease is a critical cause of mortality every year across the globe. Data mining utilises a variety of techniques and algorithms that could help to draw some interesting conclusions about cardiovascular disease. Data mining in healthcare can assist in predicting disease. This study aims to gain knowledge from a heart disease dataset and analyse several data mining classification techniques seeking improved accuracy and a lesser error rate in the results. The data set for the experiment is chosen from the UCI machine learning repository database. The dataset is analysed using two different data mining tools, i.e., WEKA and Tanagra. The analysis was done using the 10 fold cross validation technique. The results show that the Naive Bayes algorithm and the C-PLS algorithm outperform others with an accuracy of 83.71% and 84.44% respectively.\",\"PeriodicalId\":38582,\"journal\":{\"name\":\"International Journal of Data Analysis Techniques and Strategies\",\"volume\":\"26 1\",\"pages\":\"356-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Analysis Techniques and Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijdats.2019.103756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Analysis Techniques and Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijdats.2019.103756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

心血管疾病是一个广义的术语,包括中风或任何以心脏为中心的心血管系统疾病。这种疾病是全球每年死亡的一个重要原因。数据挖掘利用各种各样的技术和算法,可以帮助得出一些关于心血管疾病的有趣结论。医疗保健中的数据挖掘可以帮助预测疾病。本研究旨在从心脏病数据集中获取知识,并分析几种数据挖掘分类技术,以寻求提高准确性和降低结果的错误率。实验数据集选自UCI机器学习存储库数据库。数据集使用两种不同的数据挖掘工具进行分析,即WEKA和Tanagra。分析使用10倍交叉验证技术完成。结果表明,朴素贝叶斯算法和C-PLS算法分别以83.71%和84.44%的准确率优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data mining classification techniques - comparison for better accuracy in prediction of cardiovascular disease
Cardiovascular disease is a broad term which includes stroke or any disorder in the cardiovascular system that has the heart at its centre. This disease is a critical cause of mortality every year across the globe. Data mining utilises a variety of techniques and algorithms that could help to draw some interesting conclusions about cardiovascular disease. Data mining in healthcare can assist in predicting disease. This study aims to gain knowledge from a heart disease dataset and analyse several data mining classification techniques seeking improved accuracy and a lesser error rate in the results. The data set for the experiment is chosen from the UCI machine learning repository database. The dataset is analysed using two different data mining tools, i.e., WEKA and Tanagra. The analysis was done using the 10 fold cross validation technique. The results show that the Naive Bayes algorithm and the C-PLS algorithm outperform others with an accuracy of 83.71% and 84.44% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Data Analysis Techniques and Strategies
International Journal of Data Analysis Techniques and Strategies Decision Sciences-Information Systems and Management
CiteScore
1.20
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信