{"title":"具有控制拉普拉斯和Hölder连续性的拟共形映射","authors":"D. Kalaj, Arsen Zlaticanin","doi":"10.5186/AASFM.2019.4440","DOIUrl":null,"url":null,"abstract":"Abstract. We prove that every K-quasiconformal mapping w of the unit ball B ⊂ R, n ≥ 2 onto a C-Jordan domain Ω is Hölder continuous with constant α = 2 − n p , provided its weak Laplacian ∆w is in L(B) for some n/2 < p < n. In particular it is Hölder continuous for every 0 < α < 1 provided that ∆w ∈ L(B). Finally for p > n, we prove that w is Lipschitz continuous, a result, whose proof has been already sketched in [16] by the first author and Saksman. The paper contains the proofs of some results announced in [17].","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quasiconformal mappings with controlled Laplacian and Hölder continuity\",\"authors\":\"D. Kalaj, Arsen Zlaticanin\",\"doi\":\"10.5186/AASFM.2019.4440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We prove that every K-quasiconformal mapping w of the unit ball B ⊂ R, n ≥ 2 onto a C-Jordan domain Ω is Hölder continuous with constant α = 2 − n p , provided its weak Laplacian ∆w is in L(B) for some n/2 < p < n. In particular it is Hölder continuous for every 0 < α < 1 provided that ∆w ∈ L(B). Finally for p > n, we prove that w is Lipschitz continuous, a result, whose proof has been already sketched in [16] by the first author and Saksman. The paper contains the proofs of some results announced in [17].\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4440\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4440","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
摘要
摘要我们证明了单位球B∧R, n≥2在C-Jordan域Ω上的每一个k -拟共形映射w是Hölder连续的,且常数α = 2 - n p,只要它的弱拉普拉斯函数∆w在L(B)中,对于某些n/2 < p < n。特别是对于∆w∈L(B),对于每一个0 < α < 1,它是Hölder连续的。最后,对于p > n,我们证明了w是Lipschitz连续的,这个结果的证明已经由第一作者和Saksman在[16]中勾画出来。本文包含[17]中公布的一些结果的证明。
Quasiconformal mappings with controlled Laplacian and Hölder continuity
Abstract. We prove that every K-quasiconformal mapping w of the unit ball B ⊂ R, n ≥ 2 onto a C-Jordan domain Ω is Hölder continuous with constant α = 2 − n p , provided its weak Laplacian ∆w is in L(B) for some n/2 < p < n. In particular it is Hölder continuous for every 0 < α < 1 provided that ∆w ∈ L(B). Finally for p > n, we prove that w is Lipschitz continuous, a result, whose proof has been already sketched in [16] by the first author and Saksman. The paper contains the proofs of some results announced in [17].
期刊介绍:
Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio.
AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.