具有控制拉普拉斯和Hölder连续性的拟共形映射

IF 0.9 4区 数学 Q2 Mathematics
D. Kalaj, Arsen Zlaticanin
{"title":"具有控制拉普拉斯和Hölder连续性的拟共形映射","authors":"D. Kalaj, Arsen Zlaticanin","doi":"10.5186/AASFM.2019.4440","DOIUrl":null,"url":null,"abstract":"Abstract. We prove that every K-quasiconformal mapping w of the unit ball B ⊂ R, n ≥ 2 onto a C-Jordan domain Ω is Hölder continuous with constant α = 2 − n p , provided its weak Laplacian ∆w is in L(B) for some n/2 < p < n. In particular it is Hölder continuous for every 0 < α < 1 provided that ∆w ∈ L(B). Finally for p > n, we prove that w is Lipschitz continuous, a result, whose proof has been already sketched in [16] by the first author and Saksman. The paper contains the proofs of some results announced in [17].","PeriodicalId":50787,"journal":{"name":"Annales Academiae Scientiarum Fennicae-Mathematica","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Quasiconformal mappings with controlled Laplacian and Hölder continuity\",\"authors\":\"D. Kalaj, Arsen Zlaticanin\",\"doi\":\"10.5186/AASFM.2019.4440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We prove that every K-quasiconformal mapping w of the unit ball B ⊂ R, n ≥ 2 onto a C-Jordan domain Ω is Hölder continuous with constant α = 2 − n p , provided its weak Laplacian ∆w is in L(B) for some n/2 < p < n. In particular it is Hölder continuous for every 0 < α < 1 provided that ∆w ∈ L(B). Finally for p > n, we prove that w is Lipschitz continuous, a result, whose proof has been already sketched in [16] by the first author and Saksman. The paper contains the proofs of some results announced in [17].\",\"PeriodicalId\":50787,\"journal\":{\"name\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Academiae Scientiarum Fennicae-Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5186/AASFM.2019.4440\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Academiae Scientiarum Fennicae-Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5186/AASFM.2019.4440","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

摘要我们证明了单位球B∧R, n≥2在C-Jordan域Ω上的每一个k -拟共形映射w是Hölder连续的,且常数α = 2 - n p,只要它的弱拉普拉斯函数∆w在L(B)中,对于某些n/2 < p < n。特别是对于∆w∈L(B),对于每一个0 < α < 1,它是Hölder连续的。最后,对于p > n,我们证明了w是Lipschitz连续的,这个结果的证明已经由第一作者和Saksman在[16]中勾画出来。本文包含[17]中公布的一些结果的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasiconformal mappings with controlled Laplacian and Hölder continuity
Abstract. We prove that every K-quasiconformal mapping w of the unit ball B ⊂ R, n ≥ 2 onto a C-Jordan domain Ω is Hölder continuous with constant α = 2 − n p , provided its weak Laplacian ∆w is in L(B) for some n/2 < p < n. In particular it is Hölder continuous for every 0 < α < 1 provided that ∆w ∈ L(B). Finally for p > n, we prove that w is Lipschitz continuous, a result, whose proof has been already sketched in [16] by the first author and Saksman. The paper contains the proofs of some results announced in [17].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Annales Academiæ Scientiarum Fennicæ Mathematica is published by Academia Scientiarum Fennica since 1941. It was founded and edited, until 1974, by P.J. Myrberg. Its editor is Olli Martio. AASF publishes refereed papers in all fields of mathematics with emphasis on analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信