M. Atakishiyeva, N. Atakishiyev, J. Loreto-Hernández
{"title":"更多关于离散傅里叶变换升降算子的代数性质","authors":"M. Atakishiyeva, N. Atakishiyev, J. Loreto-Hernández","doi":"10.1063/1.5114023","DOIUrl":null,"url":null,"abstract":"In the present work, we discuss some additional findings concerning algebraic properties of the N-dimensional discrete Fourier transform (DFT) raising and lowering difference operators, recently introduced in [Atakishiyeva MK, Atakishiyev NM (2015), J Phys: Conf Ser 597, 012012; Atakishiyeva MK, Atakishiyev NM (2016), Adv Dyn Syst Appl 11, 81–92]. In particular, we argue that the most authentic symmetrical form of discretization of the integral Fourier transform may be constructed as the discrete Fourier transforms based on the odd points N only, while in the discrete Fourier transforms on the even points N this symmetry is spontaneously broken. This heretofore undetected distinction between odd and even dimensions is shown to be intimately related with the newly revealed algebraic properties of the above-mentioned DFT raising and lowering difference operators and, of course, is very consistent with the well-known formula for the multiplicities of the eigenvalues, associated with the N-dimensional DFT. In addition, we propose a general approach to deriving the eigenvectors of the discrete number operators N(N), that avoids the above-mentioned pitfalls in the structure of each even-dimensional case N = 2L.","PeriodicalId":6841,"journal":{"name":"4open","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"More on algebraic properties of the discrete Fourier transform raising and lowering operators\",\"authors\":\"M. Atakishiyeva, N. Atakishiyev, J. Loreto-Hernández\",\"doi\":\"10.1063/1.5114023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, we discuss some additional findings concerning algebraic properties of the N-dimensional discrete Fourier transform (DFT) raising and lowering difference operators, recently introduced in [Atakishiyeva MK, Atakishiyev NM (2015), J Phys: Conf Ser 597, 012012; Atakishiyeva MK, Atakishiyev NM (2016), Adv Dyn Syst Appl 11, 81–92]. In particular, we argue that the most authentic symmetrical form of discretization of the integral Fourier transform may be constructed as the discrete Fourier transforms based on the odd points N only, while in the discrete Fourier transforms on the even points N this symmetry is spontaneously broken. This heretofore undetected distinction between odd and even dimensions is shown to be intimately related with the newly revealed algebraic properties of the above-mentioned DFT raising and lowering difference operators and, of course, is very consistent with the well-known formula for the multiplicities of the eigenvalues, associated with the N-dimensional DFT. In addition, we propose a general approach to deriving the eigenvectors of the discrete number operators N(N), that avoids the above-mentioned pitfalls in the structure of each even-dimensional case N = 2L.\",\"PeriodicalId\":6841,\"journal\":{\"name\":\"4open\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5114023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5114023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
More on algebraic properties of the discrete Fourier transform raising and lowering operators
In the present work, we discuss some additional findings concerning algebraic properties of the N-dimensional discrete Fourier transform (DFT) raising and lowering difference operators, recently introduced in [Atakishiyeva MK, Atakishiyev NM (2015), J Phys: Conf Ser 597, 012012; Atakishiyeva MK, Atakishiyev NM (2016), Adv Dyn Syst Appl 11, 81–92]. In particular, we argue that the most authentic symmetrical form of discretization of the integral Fourier transform may be constructed as the discrete Fourier transforms based on the odd points N only, while in the discrete Fourier transforms on the even points N this symmetry is spontaneously broken. This heretofore undetected distinction between odd and even dimensions is shown to be intimately related with the newly revealed algebraic properties of the above-mentioned DFT raising and lowering difference operators and, of course, is very consistent with the well-known formula for the multiplicities of the eigenvalues, associated with the N-dimensional DFT. In addition, we propose a general approach to deriving the eigenvectors of the discrete number operators N(N), that avoids the above-mentioned pitfalls in the structure of each even-dimensional case N = 2L.