{"title":"一类具有周期振荡系数的椭圆型方程的周期格林函数的分解和点态估计","authors":"Marc Josien","doi":"10.3233/ASY-181504","DOIUrl":null,"url":null,"abstract":"This article is about the $\\mathbb{Z}^d$-periodic Green function $G_n(x,y)$ of the multiscale elliptic operator $Lu=-{\\rm div}\\left( A(n\\cdot) \\cdot \\nabla u \\right)$, where $A(x)$ is a $\\mathbb{Z}^d$-periodic, coercive, and H\\\"older continuous matrix, and $n$ is a large integer. We prove here pointwise estimates on $G_n(x,y)$, $\\nabla_x G_n(x,y)$, $\\nabla_y G_n(x,y)$ and $\\nabla_x \\nabla_y G_n(x,y)$ in dimensions $d \\geq 2$. Moreover, we derive an explicit decomposition of this Green function, which is of independent interest. These results also apply for systems.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"112 1","pages":"227-246"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Decomposition and pointwise estimates of periodic Green functions of some elliptic equations with periodic oscillatory coefficients\",\"authors\":\"Marc Josien\",\"doi\":\"10.3233/ASY-181504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is about the $\\\\mathbb{Z}^d$-periodic Green function $G_n(x,y)$ of the multiscale elliptic operator $Lu=-{\\\\rm div}\\\\left( A(n\\\\cdot) \\\\cdot \\\\nabla u \\\\right)$, where $A(x)$ is a $\\\\mathbb{Z}^d$-periodic, coercive, and H\\\\\\\"older continuous matrix, and $n$ is a large integer. We prove here pointwise estimates on $G_n(x,y)$, $\\\\nabla_x G_n(x,y)$, $\\\\nabla_y G_n(x,y)$ and $\\\\nabla_x \\\\nabla_y G_n(x,y)$ in dimensions $d \\\\geq 2$. Moreover, we derive an explicit decomposition of this Green function, which is of independent interest. These results also apply for systems.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"112 1\",\"pages\":\"227-246\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decomposition and pointwise estimates of periodic Green functions of some elliptic equations with periodic oscillatory coefficients
This article is about the $\mathbb{Z}^d$-periodic Green function $G_n(x,y)$ of the multiscale elliptic operator $Lu=-{\rm div}\left( A(n\cdot) \cdot \nabla u \right)$, where $A(x)$ is a $\mathbb{Z}^d$-periodic, coercive, and H\"older continuous matrix, and $n$ is a large integer. We prove here pointwise estimates on $G_n(x,y)$, $\nabla_x G_n(x,y)$, $\nabla_y G_n(x,y)$ and $\nabla_x \nabla_y G_n(x,y)$ in dimensions $d \geq 2$. Moreover, we derive an explicit decomposition of this Green function, which is of independent interest. These results also apply for systems.