透镜空间和表面奇点上的紧密接触结构

IF 0.5 3区 数学 Q3 MATHEMATICS
Sinem Onaran, Ferit Ozturk
{"title":"透镜空间和表面奇点上的紧密接触结构","authors":"Sinem Onaran, Ferit Ozturk","doi":"10.1142/s1793525323500139","DOIUrl":null,"url":null,"abstract":"We classify the real tight contact structures on solid tori up to equivariant contact isotopy and apply the results to the classification of real tight structures on $S^3$ and real lens spaces $L(p,\\pm 1)$. We prove that there is a unique real tight $S^3$ and $\\mathbb{R}P^3$. We show there is at most one real tight $L(p,\\pm 1)$ with respect to one of its two possible real structures. With respect to the other we give lower and upper bounds for the count. To establish lower bounds we explicitly construct real tight manifolds through equivariant contact surgery, real open book decompositions and isolated real algebraic surface singularities. As a by-product we observe the existence of an invariant torus in an $L(p,p-1)$ which cannot be made convex equivariantly.","PeriodicalId":49151,"journal":{"name":"Journal of Topology and Analysis","volume":"29 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Real tight contact structures on lens spaces and surface singularities\",\"authors\":\"Sinem Onaran, Ferit Ozturk\",\"doi\":\"10.1142/s1793525323500139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify the real tight contact structures on solid tori up to equivariant contact isotopy and apply the results to the classification of real tight structures on $S^3$ and real lens spaces $L(p,\\\\pm 1)$. We prove that there is a unique real tight $S^3$ and $\\\\mathbb{R}P^3$. We show there is at most one real tight $L(p,\\\\pm 1)$ with respect to one of its two possible real structures. With respect to the other we give lower and upper bounds for the count. To establish lower bounds we explicitly construct real tight manifolds through equivariant contact surgery, real open book decompositions and isolated real algebraic surface singularities. As a by-product we observe the existence of an invariant torus in an $L(p,p-1)$ which cannot be made convex equivariantly.\",\"PeriodicalId\":49151,\"journal\":{\"name\":\"Journal of Topology and Analysis\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Topology and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793525323500139\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793525323500139","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们将固体环面上的实紧密接触结构划分为等变接触同位素,并将结果应用于实透镜空间L(p,\pm 1)$和S^3$上的实紧密结构的划分。证明了存在唯一的实紧$S^3$和$\mathbb{R}P^3$。我们证明了对于它的两个可能的实结构中的一个,最多有一个实紧$L(p,\pm 1)$。对于另一个,我们给出了计数的下界和上界。为了建立下界,我们通过等变接触手术、实开卷分解和孤立实代数曲面奇点来显式构造实紧流形。作为一个副产品,我们观察到在L(p,p-1)$中存在一个不变环面,它不能被等价地成为凸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real tight contact structures on lens spaces and surface singularities
We classify the real tight contact structures on solid tori up to equivariant contact isotopy and apply the results to the classification of real tight structures on $S^3$ and real lens spaces $L(p,\pm 1)$. We prove that there is a unique real tight $S^3$ and $\mathbb{R}P^3$. We show there is at most one real tight $L(p,\pm 1)$ with respect to one of its two possible real structures. With respect to the other we give lower and upper bounds for the count. To establish lower bounds we explicitly construct real tight manifolds through equivariant contact surgery, real open book decompositions and isolated real algebraic surface singularities. As a by-product we observe the existence of an invariant torus in an $L(p,p-1)$ which cannot be made convex equivariantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
13
审稿时长
>12 weeks
期刊介绍: This journal is devoted to topology and analysis, broadly defined to include, for instance, differential geometry, geometric topology, geometric analysis, geometric group theory, index theory, noncommutative geometry, and aspects of probability on discrete structures, and geometry of Banach spaces. We welcome all excellent papers that have a geometric and/or analytic flavor that fosters the interactions between these fields. Papers published in this journal should break new ground or represent definitive progress on problems of current interest. On rare occasion, we will also accept survey papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信