{"title":"HPLC法测定MS-153在大鼠血浆和脑匀浆中的稳定性","authors":"Y. Wei, Bachu Rd, Y. Sari, Boddu Shs","doi":"10.4172/2153-2435.1000588","DOIUrl":null,"url":null,"abstract":"MS-153 is a novel pyrazoline compound that serves as a potential neuroprotective therapeutic agent during ischemia. Development of a convenient, quick, and robust analytical method to quantify MS-153 in biological samples is necessary to understand it’s in vivo pharmacokinetic/pharmacodynamics (PKPD) profiles. An isocratic reverse-phase HPLC method was developed and validated for quantification of MS-153. Chromatographic separation was achieved with a C18 column. Mobile phase consisting of water/acetonitrile (85/15, v/v) was pumped at a flow rate of 1.0 mL/min. The retention time of MS-153 (λmax=260 nm) was found to be 7.15 minutes. A calibration curve established over a range of 0.78125 ng to 500 ng showed a correlation coefficient of 1.0. The LOD and LOQ were found to be 0.164 and 0.496 ng, respectively. The accuracy, intra-day precision, and inter-day precision were found to be 99.97% to 101.66% (recovery), 0.21% to 0.55% (RSD), and 0.32% to 0.82% (RSD), respectively. MS-153 was analysed from biological samples by adding methanol to remove proteins in the biological matrix prior to HPLC analysis. The extraction efficiency was found to be 100%. The developed method was also used to analyse the stability of MS-153 in diluted blank rat plasma and brain homogenate samples. Results indicated that no significant degradation of MS-153 was observed at 37°C for 6 h.","PeriodicalId":19833,"journal":{"name":"Pharmaceutica Analytica Acta","volume":"16 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a HPLC Method for MS-153 Quantification: Assessment of its Stability in Rat Plasma and Brain Homogenate\",\"authors\":\"Y. Wei, Bachu Rd, Y. Sari, Boddu Shs\",\"doi\":\"10.4172/2153-2435.1000588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MS-153 is a novel pyrazoline compound that serves as a potential neuroprotective therapeutic agent during ischemia. Development of a convenient, quick, and robust analytical method to quantify MS-153 in biological samples is necessary to understand it’s in vivo pharmacokinetic/pharmacodynamics (PKPD) profiles. An isocratic reverse-phase HPLC method was developed and validated for quantification of MS-153. Chromatographic separation was achieved with a C18 column. Mobile phase consisting of water/acetonitrile (85/15, v/v) was pumped at a flow rate of 1.0 mL/min. The retention time of MS-153 (λmax=260 nm) was found to be 7.15 minutes. A calibration curve established over a range of 0.78125 ng to 500 ng showed a correlation coefficient of 1.0. The LOD and LOQ were found to be 0.164 and 0.496 ng, respectively. The accuracy, intra-day precision, and inter-day precision were found to be 99.97% to 101.66% (recovery), 0.21% to 0.55% (RSD), and 0.32% to 0.82% (RSD), respectively. MS-153 was analysed from biological samples by adding methanol to remove proteins in the biological matrix prior to HPLC analysis. The extraction efficiency was found to be 100%. The developed method was also used to analyse the stability of MS-153 in diluted blank rat plasma and brain homogenate samples. Results indicated that no significant degradation of MS-153 was observed at 37°C for 6 h.\",\"PeriodicalId\":19833,\"journal\":{\"name\":\"Pharmaceutica Analytica Acta\",\"volume\":\"16 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutica Analytica Acta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2153-2435.1000588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutica Analytica Acta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2153-2435.1000588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and Validation of a HPLC Method for MS-153 Quantification: Assessment of its Stability in Rat Plasma and Brain Homogenate
MS-153 is a novel pyrazoline compound that serves as a potential neuroprotective therapeutic agent during ischemia. Development of a convenient, quick, and robust analytical method to quantify MS-153 in biological samples is necessary to understand it’s in vivo pharmacokinetic/pharmacodynamics (PKPD) profiles. An isocratic reverse-phase HPLC method was developed and validated for quantification of MS-153. Chromatographic separation was achieved with a C18 column. Mobile phase consisting of water/acetonitrile (85/15, v/v) was pumped at a flow rate of 1.0 mL/min. The retention time of MS-153 (λmax=260 nm) was found to be 7.15 minutes. A calibration curve established over a range of 0.78125 ng to 500 ng showed a correlation coefficient of 1.0. The LOD and LOQ were found to be 0.164 and 0.496 ng, respectively. The accuracy, intra-day precision, and inter-day precision were found to be 99.97% to 101.66% (recovery), 0.21% to 0.55% (RSD), and 0.32% to 0.82% (RSD), respectively. MS-153 was analysed from biological samples by adding methanol to remove proteins in the biological matrix prior to HPLC analysis. The extraction efficiency was found to be 100%. The developed method was also used to analyse the stability of MS-153 in diluted blank rat plasma and brain homogenate samples. Results indicated that no significant degradation of MS-153 was observed at 37°C for 6 h.