回答自治Web数据库上的不精确查询

Ullas Nambiar, S. Kambhampati
{"title":"回答自治Web数据库上的不精确查询","authors":"Ullas Nambiar, S. Kambhampati","doi":"10.1109/ICDE.2006.20","DOIUrl":null,"url":null,"abstract":"Current approaches for answering queries with imprecise constraints require user-specific distance metrics and importance measures for attributes of interest - metrics that are hard to elicit from lay users. We present AIMQ, a domain and user independent approach for answering imprecise queries over autonomous Web databases. We developed methods for query relaxation that use approximate functional dependencies. We also present an approach to automatically estimate the similarity between values of categorical attributes. Experimental results demonstrating the robustness, efficiency and effectiveness of AIMQ are presented. Results of a preliminary user study demonstrating the high precision of the AIMQ system is also provided.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"3 1","pages":"45-45"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Answering Imprecise Queries over Autonomous Web Databases\",\"authors\":\"Ullas Nambiar, S. Kambhampati\",\"doi\":\"10.1109/ICDE.2006.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current approaches for answering queries with imprecise constraints require user-specific distance metrics and importance measures for attributes of interest - metrics that are hard to elicit from lay users. We present AIMQ, a domain and user independent approach for answering imprecise queries over autonomous Web databases. We developed methods for query relaxation that use approximate functional dependencies. We also present an approach to automatically estimate the similarity between values of categorical attributes. Experimental results demonstrating the robustness, efficiency and effectiveness of AIMQ are presented. Results of a preliminary user study demonstrating the high precision of the AIMQ system is also provided.\",\"PeriodicalId\":6819,\"journal\":{\"name\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"volume\":\"3 1\",\"pages\":\"45-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference on Data Engineering (ICDE'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2006.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

当前回答带有不精确约束的查询的方法需要用户特定的距离度量和感兴趣属性的重要性度量——这些度量很难从外行用户那里得到。我们提出AIMQ,一种独立于域和用户的方法,用于回答自治Web数据库上的不精确查询。我们开发了使用近似函数依赖的查询松弛方法。我们还提出了一种自动估计分类属性值之间相似度的方法。实验结果证明了该算法的鲁棒性、高效性和有效性。初步的用户研究结果证明了AIMQ系统的高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Answering Imprecise Queries over Autonomous Web Databases
Current approaches for answering queries with imprecise constraints require user-specific distance metrics and importance measures for attributes of interest - metrics that are hard to elicit from lay users. We present AIMQ, a domain and user independent approach for answering imprecise queries over autonomous Web databases. We developed methods for query relaxation that use approximate functional dependencies. We also present an approach to automatically estimate the similarity between values of categorical attributes. Experimental results demonstrating the robustness, efficiency and effectiveness of AIMQ are presented. Results of a preliminary user study demonstrating the high precision of the AIMQ system is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信