随机热和平流柯西

Sohalya Ma, Yassena Mt, Elbaza Im
{"title":"随机热和平流柯西","authors":"Sohalya Ma, Yassena Mt, Elbaza Im","doi":"10.4172/2168-9679.1000345","DOIUrl":null,"url":null,"abstract":"In this paper, the solutions of Cauchy problems for the stochastic advection and stochastic diffusion equations are obtained using the finite difference method. In the case when the flow velocity is a function of stochastic flow velocity and also, the diffusion coefficient in the stochastic heat equation is a function of stochastic diffusion coefficient, the consistency and stability of the finite difference scheme we are used need to be performed under mean square calculus.","PeriodicalId":15007,"journal":{"name":"Journal of Applied and Computational Mathematics","volume":"18 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic Heat and Advection Cauchy\",\"authors\":\"Sohalya Ma, Yassena Mt, Elbaza Im\",\"doi\":\"10.4172/2168-9679.1000345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the solutions of Cauchy problems for the stochastic advection and stochastic diffusion equations are obtained using the finite difference method. In the case when the flow velocity is a function of stochastic flow velocity and also, the diffusion coefficient in the stochastic heat equation is a function of stochastic diffusion coefficient, the consistency and stability of the finite difference scheme we are used need to be performed under mean square calculus.\",\"PeriodicalId\":15007,\"journal\":{\"name\":\"Journal of Applied and Computational Mathematics\",\"volume\":\"18 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied and Computational Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9679.1000345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9679.1000345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文用有限差分法得到了随机平流方程和随机扩散方程的Cauchy问题的解。当流速是随机流速的函数,且随机热方程中的扩散系数是随机扩散系数的函数时,我们所使用的有限差分格式的一致性和稳定性需要在均方微积分下进行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Heat and Advection Cauchy
In this paper, the solutions of Cauchy problems for the stochastic advection and stochastic diffusion equations are obtained using the finite difference method. In the case when the flow velocity is a function of stochastic flow velocity and also, the diffusion coefficient in the stochastic heat equation is a function of stochastic diffusion coefficient, the consistency and stability of the finite difference scheme we are used need to be performed under mean square calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信