提高向日葵产量的电磁技术

Mariia Chorna, Dmytro Milenin
{"title":"提高向日葵产量的电磁技术","authors":"Mariia Chorna, Dmytro Milenin","doi":"10.21303/2585-6847.2018.00769","DOIUrl":null,"url":null,"abstract":"The article solves the problem of obtaining scientifically based practical and experimental results of increasing the yield and oil content of sunflower seeds, based on the use of information EMF of EHF range for pre-sowing treatment of seeds. The study of the biophysical effects of the electromagnetic field on sunflower seeds was carried out in order to determine the biotropic parameters of the electromagnetic field, which have a stimulating effect on the seeds. For this, a mathematical model of a sunflower seed in the form of a spheroid was developed. For the calculations, the following frequency range of the exciting wave 25–40 GHz was chosen. The choice of this range is due to two circumstances. First, the relative dielectric constant of sunflower seeds in this range practically does not have frequency dispersion. Secondly, the wavelength is commensurate with the characteristic geometrical sizes of the seeds and, therefore, the intensity of the excited electric field inside the seeds resonantly depends on the frequency. The measurement of chemiluminescence was chosen as the response of the biological object. For registration of extremely weak light fluxes of seeds, the photon counting method was chosen, which made it possible to carry out effective measurements of both spontaneous biochemiluminescence and induced information EMF. As a result of theoretical and experimental studies, a system was developed for measuring the chemiluminescence of seeds. The purpose of the experiment was clarification of the optimal biotropic parameters of the information EMF, which would provide an increase in yield and quality of sunflower seeds when they are irradiated with EMF. The result of field tests showed the advantage of using electromagnetic technology over other methods of pre-sowing treatment of seeds","PeriodicalId":33845,"journal":{"name":"Technology Transfer Fundamental Principles and Innovative Technical Solutions","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic technology of increasing the yield of sunflower\",\"authors\":\"Mariia Chorna, Dmytro Milenin\",\"doi\":\"10.21303/2585-6847.2018.00769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article solves the problem of obtaining scientifically based practical and experimental results of increasing the yield and oil content of sunflower seeds, based on the use of information EMF of EHF range for pre-sowing treatment of seeds. The study of the biophysical effects of the electromagnetic field on sunflower seeds was carried out in order to determine the biotropic parameters of the electromagnetic field, which have a stimulating effect on the seeds. For this, a mathematical model of a sunflower seed in the form of a spheroid was developed. For the calculations, the following frequency range of the exciting wave 25–40 GHz was chosen. The choice of this range is due to two circumstances. First, the relative dielectric constant of sunflower seeds in this range practically does not have frequency dispersion. Secondly, the wavelength is commensurate with the characteristic geometrical sizes of the seeds and, therefore, the intensity of the excited electric field inside the seeds resonantly depends on the frequency. The measurement of chemiluminescence was chosen as the response of the biological object. For registration of extremely weak light fluxes of seeds, the photon counting method was chosen, which made it possible to carry out effective measurements of both spontaneous biochemiluminescence and induced information EMF. As a result of theoretical and experimental studies, a system was developed for measuring the chemiluminescence of seeds. The purpose of the experiment was clarification of the optimal biotropic parameters of the information EMF, which would provide an increase in yield and quality of sunflower seeds when they are irradiated with EMF. The result of field tests showed the advantage of using electromagnetic technology over other methods of pre-sowing treatment of seeds\",\"PeriodicalId\":33845,\"journal\":{\"name\":\"Technology Transfer Fundamental Principles and Innovative Technical Solutions\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technology Transfer Fundamental Principles and Innovative Technical Solutions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21303/2585-6847.2018.00769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology Transfer Fundamental Principles and Innovative Technical Solutions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21303/2585-6847.2018.00769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了利用EHF范围的信息电磁场对种子进行播前处理,获得科学的提高葵花籽产量和含油量的实践和实验结果的问题。研究了电磁场对葵花籽的生物物理效应,以确定电磁场对葵花籽有刺激作用的生物性参数。为此,我们建立了一个葵花籽球形的数学模型。在计算中,选取激励波25-40 GHz的频率范围如下:选择这个范围是基于两种情况。首先,在这个范围内,葵花籽的相对介电常数实际上不存在频散。其次,波长与种子的特征几何尺寸相称,因此,种子内部激发电场的强度共振地取决于频率。选择化学发光的测量作为生物对象的响应。对于极弱的种子光通量的登记,选择光子计数法,使自发生化发光和诱导信息电动势的有效测量成为可能。通过理论和实验研究,建立了一套测量种子化学发光的系统。本实验旨在明确信息电磁场的最佳生物效应参数,为提高向日葵种子在电磁场照射下的产量和品质提供依据。田间试验结果表明,电磁技术优于其他播前处理方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromagnetic technology of increasing the yield of sunflower
The article solves the problem of obtaining scientifically based practical and experimental results of increasing the yield and oil content of sunflower seeds, based on the use of information EMF of EHF range for pre-sowing treatment of seeds. The study of the biophysical effects of the electromagnetic field on sunflower seeds was carried out in order to determine the biotropic parameters of the electromagnetic field, which have a stimulating effect on the seeds. For this, a mathematical model of a sunflower seed in the form of a spheroid was developed. For the calculations, the following frequency range of the exciting wave 25–40 GHz was chosen. The choice of this range is due to two circumstances. First, the relative dielectric constant of sunflower seeds in this range practically does not have frequency dispersion. Secondly, the wavelength is commensurate with the characteristic geometrical sizes of the seeds and, therefore, the intensity of the excited electric field inside the seeds resonantly depends on the frequency. The measurement of chemiluminescence was chosen as the response of the biological object. For registration of extremely weak light fluxes of seeds, the photon counting method was chosen, which made it possible to carry out effective measurements of both spontaneous biochemiluminescence and induced information EMF. As a result of theoretical and experimental studies, a system was developed for measuring the chemiluminescence of seeds. The purpose of the experiment was clarification of the optimal biotropic parameters of the information EMF, which would provide an increase in yield and quality of sunflower seeds when they are irradiated with EMF. The result of field tests showed the advantage of using electromagnetic technology over other methods of pre-sowing treatment of seeds
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信