{"title":"从基因型数据预测表型的新核心方法。","authors":"Ritsuko Onuki, T. Shibuya, M. Kanehisa","doi":"10.1142/9781848165786_0011","DOIUrl":null,"url":null,"abstract":"Phenotype prediction from genotype data is one of the most important issues in computational genetics. In this work, we propose a new kernel (i.e., an SVM: Support Vector Machine) method for phenotype prediction from genotype data. In our method, we first infer multiple suboptimal haplotype candidates from each genotype by using the HMM (Hidden Markov Model), and the kernel matrix is computed based on the predicted haplotype candidates and their emission probabilities from the HMM. We validated the performance of our method through experiments on several datasets: One is an artificially constructed dataset via a program GeneArtisan, others are a real dataset of the NAT2 gene from the international HapMap project, and a real dataset of genotypes of diseased individuals. The experiments show that our method is superior to ordinary naive kernel methods (i.e., not based on haplotype prediction), especially in cases of strong LD (linkage disequilibrium).","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":"97 1","pages":"132-41"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"New kernel methods for phenotype prediction from genotype data.\",\"authors\":\"Ritsuko Onuki, T. Shibuya, M. Kanehisa\",\"doi\":\"10.1142/9781848165786_0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phenotype prediction from genotype data is one of the most important issues in computational genetics. In this work, we propose a new kernel (i.e., an SVM: Support Vector Machine) method for phenotype prediction from genotype data. In our method, we first infer multiple suboptimal haplotype candidates from each genotype by using the HMM (Hidden Markov Model), and the kernel matrix is computed based on the predicted haplotype candidates and their emission probabilities from the HMM. We validated the performance of our method through experiments on several datasets: One is an artificially constructed dataset via a program GeneArtisan, others are a real dataset of the NAT2 gene from the international HapMap project, and a real dataset of genotypes of diseased individuals. The experiments show that our method is superior to ordinary naive kernel methods (i.e., not based on haplotype prediction), especially in cases of strong LD (linkage disequilibrium).\",\"PeriodicalId\":73143,\"journal\":{\"name\":\"Genome informatics. International Conference on Genome Informatics\",\"volume\":\"97 1\",\"pages\":\"132-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome informatics. International Conference on Genome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848165786_0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848165786_0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New kernel methods for phenotype prediction from genotype data.
Phenotype prediction from genotype data is one of the most important issues in computational genetics. In this work, we propose a new kernel (i.e., an SVM: Support Vector Machine) method for phenotype prediction from genotype data. In our method, we first infer multiple suboptimal haplotype candidates from each genotype by using the HMM (Hidden Markov Model), and the kernel matrix is computed based on the predicted haplotype candidates and their emission probabilities from the HMM. We validated the performance of our method through experiments on several datasets: One is an artificially constructed dataset via a program GeneArtisan, others are a real dataset of the NAT2 gene from the international HapMap project, and a real dataset of genotypes of diseased individuals. The experiments show that our method is superior to ordinary naive kernel methods (i.e., not based on haplotype prediction), especially in cases of strong LD (linkage disequilibrium).