三维拟sasaki流形上的四分之一对称度量连接

Q4 Mathematics
A. Mondal
{"title":"三维拟sasaki流形上的四分之一对称度量连接","authors":"A. Mondal","doi":"10.55937/sut/1280431052","DOIUrl":null,"url":null,"abstract":"The object of the present paper is to study a quarter-symmetric metric connection on a 3-dimensional quasi-Sasakian manifold. The existence of the connection is given on a Riemannian manifold. We deduce the relation be- tween the Riemannian connection and the quarter-symmetric metric connection on a 3-dimensional quasi-Sasakian manifold. We investigate the curvature ten- sor and the Ricci tensor of a 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. We study the projective curvature tensor with respect to the quarter-symmetric metric connection and also charac- terized ξ−projectively flat and φ−projectively flat 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. Finally we study locally φ−symmetric 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. AMS 2000 Mathematics Subject Classification. 53C15, 53C40.","PeriodicalId":38708,"journal":{"name":"SUT Journal of Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Quarter-symmetric metric connection on 3-dimensional quasi-Sasakian manifolds\",\"authors\":\"A. Mondal\",\"doi\":\"10.55937/sut/1280431052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object of the present paper is to study a quarter-symmetric metric connection on a 3-dimensional quasi-Sasakian manifold. The existence of the connection is given on a Riemannian manifold. We deduce the relation be- tween the Riemannian connection and the quarter-symmetric metric connection on a 3-dimensional quasi-Sasakian manifold. We investigate the curvature ten- sor and the Ricci tensor of a 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. We study the projective curvature tensor with respect to the quarter-symmetric metric connection and also charac- terized ξ−projectively flat and φ−projectively flat 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. Finally we study locally φ−symmetric 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. AMS 2000 Mathematics Subject Classification. 53C15, 53C40.\",\"PeriodicalId\":38708,\"journal\":{\"name\":\"SUT Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SUT Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55937/sut/1280431052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SUT Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55937/sut/1280431052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

本文的目的是研究三维拟sasaki流形上的四分之一对称度量连接。在黎曼流形上给出了这种联系的存在性。我们推导了三维拟sasaki流形上的黎曼连接与四分之一对称度量连接之间的关系。研究了三维拟sasaki流形在四分之一对称度规连接下的曲率十量和Ricci张量。我们研究了关于四分之一对称度量连接的投影曲率张量,并刻画了关于四分之一对称度量连接的ξ−投影平坦和φ−投影平坦的三维拟sasaki流形。最后,我们研究了局部φ−对称的三维拟sasaki流形的四分之一对称度量连接。AMS 2000数学学科分类。53C15, 53C40。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quarter-symmetric metric connection on 3-dimensional quasi-Sasakian manifolds
The object of the present paper is to study a quarter-symmetric metric connection on a 3-dimensional quasi-Sasakian manifold. The existence of the connection is given on a Riemannian manifold. We deduce the relation be- tween the Riemannian connection and the quarter-symmetric metric connection on a 3-dimensional quasi-Sasakian manifold. We investigate the curvature ten- sor and the Ricci tensor of a 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. We study the projective curvature tensor with respect to the quarter-symmetric metric connection and also charac- terized ξ−projectively flat and φ−projectively flat 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. Finally we study locally φ−symmetric 3-dimensional quasi-Sasakian manifold with respect to the quarter-symmetric metric connection. AMS 2000 Mathematics Subject Classification. 53C15, 53C40.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SUT Journal of Mathematics
SUT Journal of Mathematics Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信