解析曲面上的势论

IF 0.6 Q3 MATHEMATICS
B. Abdullaev, Kh.Q. Kamolov
{"title":"解析曲面上的势论","authors":"B. Abdullaev, Kh.Q. Kamolov","doi":"10.35634/vm230101","DOIUrl":null,"url":null,"abstract":"The work is devoted to the theory of pluripotential on analytic surfaces. The pluripotential theory on the complex space ${\\mathbb C}^{n},$ as well as on the Stein complex manifold $X\\subset{\\mathbb C}^{N}$ (without a singular set) have been studied in enough detail. In this work, we propose a new approach for studying the main objects of potential theory on an analytic set with a non-empty singular (critical) set.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":"2 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential theory on an analytic surface\",\"authors\":\"B. Abdullaev, Kh.Q. Kamolov\",\"doi\":\"10.35634/vm230101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work is devoted to the theory of pluripotential on analytic surfaces. The pluripotential theory on the complex space ${\\\\mathbb C}^{n},$ as well as on the Stein complex manifold $X\\\\subset{\\\\mathbb C}^{N}$ (without a singular set) have been studied in enough detail. In this work, we propose a new approach for studying the main objects of potential theory on an analytic set with a non-empty singular (critical) set.\",\"PeriodicalId\":43239,\"journal\":{\"name\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35634/vm230101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于分析曲面上的多能理论。本文较为详细地研究了复空间${\mathbb C}^{n}和Stein复流形$X\子集{\mathbb C}^{n} $(不含奇异集)上的多势理论。在本文中,我们提出了一种新的方法来研究具有非空奇异(临界)集的解析集上的势理论的主要对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Potential theory on an analytic surface
The work is devoted to the theory of pluripotential on analytic surfaces. The pluripotential theory on the complex space ${\mathbb C}^{n},$ as well as on the Stein complex manifold $X\subset{\mathbb C}^{N}$ (without a singular set) have been studied in enough detail. In this work, we propose a new approach for studying the main objects of potential theory on an analytic set with a non-empty singular (critical) set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信