一种使用数据约束规则的自动数据实用程序聚类方法

Stuart Morton, M. Mahoui, P. Gibson
{"title":"一种使用数据约束规则的自动数据实用程序聚类方法","authors":"Stuart Morton, M. Mahoui, P. Gibson","doi":"10.1145/2389707.2389710","DOIUrl":null,"url":null,"abstract":"Many data privacy models have been created in the last few years using the k-anonymization methodology including l-diversity, p-sensitive k-anonymity, and t-closeness. While these methods differ in their approaches and quality of the results, they all focus on ensuring the anonymization of the data while at the same time attempt to protect the quality of the data by minimizing the loss of the information contained in the original data set. In this paper, we propose an automated k-anonymity approach that uses clustering to maximize the utility of the data while ensuring that the data privacy is maintained. Our method employs data constraint rules, which are defined by the data research expert to represent especially informative distributions in categorical attributes or inflections points in a continuous attribute. The values of the data constraints are an integral component of our utility function, which is used to maximize the utility of the anonymized dataset. Finally, we present our experimental results that show that our approach meets or exceeds existing methods that do not incorporate data constraint rules.","PeriodicalId":92138,"journal":{"name":"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)","volume":"3 1","pages":"9-16"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An automated data utility clustering methodology using data constraint rules\",\"authors\":\"Stuart Morton, M. Mahoui, P. Gibson\",\"doi\":\"10.1145/2389707.2389710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many data privacy models have been created in the last few years using the k-anonymization methodology including l-diversity, p-sensitive k-anonymity, and t-closeness. While these methods differ in their approaches and quality of the results, they all focus on ensuring the anonymization of the data while at the same time attempt to protect the quality of the data by minimizing the loss of the information contained in the original data set. In this paper, we propose an automated k-anonymity approach that uses clustering to maximize the utility of the data while ensuring that the data privacy is maintained. Our method employs data constraint rules, which are defined by the data research expert to represent especially informative distributions in categorical attributes or inflections points in a continuous attribute. The values of the data constraints are an integral component of our utility function, which is used to maximize the utility of the anonymized dataset. Finally, we present our experimental results that show that our approach meets or exceeds existing methods that do not incorporate data constraint rules.\",\"PeriodicalId\":92138,\"journal\":{\"name\":\"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)\",\"volume\":\"3 1\",\"pages\":\"9-16\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2389707.2389710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SHB'12 : proceedings of the 2012 ACM International Workshop on Smart Health and Wellbeing : October 29, 2012, Maui, Hawaii, USA. International Workshop on Smart Health and Wellbeing (2012 : Maui, Hawaii)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2389707.2389710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在过去的几年里,许多数据隐私模型都是使用k匿名化方法创建的,包括l多样性、p敏感k匿名和t接近。虽然这些方法在方法和结果质量上有所不同,但它们都侧重于确保数据的匿名化,同时试图通过最小化原始数据集中包含的信息的丢失来保护数据的质量。在本文中,我们提出了一种自动k-匿名方法,该方法使用聚类来最大化数据的效用,同时确保数据隐私得到维护。我们的方法使用由数据研究专家定义的数据约束规则来表示分类属性或连续属性拐点中的特别信息分布。数据约束的值是我们的效用函数的一个组成部分,它用于最大化匿名数据集的效用。最后,我们展示了我们的实验结果,表明我们的方法满足或超过了不包含数据约束规则的现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automated data utility clustering methodology using data constraint rules
Many data privacy models have been created in the last few years using the k-anonymization methodology including l-diversity, p-sensitive k-anonymity, and t-closeness. While these methods differ in their approaches and quality of the results, they all focus on ensuring the anonymization of the data while at the same time attempt to protect the quality of the data by minimizing the loss of the information contained in the original data set. In this paper, we propose an automated k-anonymity approach that uses clustering to maximize the utility of the data while ensuring that the data privacy is maintained. Our method employs data constraint rules, which are defined by the data research expert to represent especially informative distributions in categorical attributes or inflections points in a continuous attribute. The values of the data constraints are an integral component of our utility function, which is used to maximize the utility of the anonymized dataset. Finally, we present our experimental results that show that our approach meets or exceeds existing methods that do not incorporate data constraint rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信