集值泛函微分方程解的二次逼近

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Peiguang Wang, Yameng Wang
{"title":"集值泛函微分方程解的二次逼近","authors":"Peiguang Wang, Yameng Wang","doi":"10.11948/20200133","DOIUrl":null,"url":null,"abstract":"This paper investigates nonlinear set-valued functional differential equations with initial value conditions. By introducing the notion of Hukuhara partial derivative of set-valued function, using the comparison principle and the method of quasilinearization, we obtain monotone iterative sequences of approximate solutions which converge uniformly and quadratically to the solutions of such problems.","PeriodicalId":48811,"journal":{"name":"Journal of Applied Analysis and Computation","volume":"35 1","pages":"532-545"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"QUADRATIC APPROXIMATION OF SOLUTIONS FOR SET-VALUED FUNCTIONAL DIFFERENTIAL EQUATIONS\",\"authors\":\"Peiguang Wang, Yameng Wang\",\"doi\":\"10.11948/20200133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates nonlinear set-valued functional differential equations with initial value conditions. By introducing the notion of Hukuhara partial derivative of set-valued function, using the comparison principle and the method of quasilinearization, we obtain monotone iterative sequences of approximate solutions which converge uniformly and quadratically to the solutions of such problems.\",\"PeriodicalId\":48811,\"journal\":{\"name\":\"Journal of Applied Analysis and Computation\",\"volume\":\"35 1\",\"pages\":\"532-545\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Analysis and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11948/20200133\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Analysis and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11948/20200133","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 3

摘要

研究具有初值条件的非线性集值泛函微分方程。通过引入集值函数的Hukuhara偏导数的概念,利用比较原理和拟线性化方法,得到了近似解的单调迭代序列,该序列一致地、二次地收敛于这类问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QUADRATIC APPROXIMATION OF SOLUTIONS FOR SET-VALUED FUNCTIONAL DIFFERENTIAL EQUATIONS
This paper investigates nonlinear set-valued functional differential equations with initial value conditions. By introducing the notion of Hukuhara partial derivative of set-valued function, using the comparison principle and the method of quasilinearization, we obtain monotone iterative sequences of approximate solutions which converge uniformly and quadratically to the solutions of such problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
9.10%
发文量
45
期刊介绍: The Journal of Applied Analysis and Computation (JAAC) is aimed to publish original research papers and survey articles on the theory, scientific computation and application of nonlinear analysis, differential equations and dynamical systems including interdisciplinary research topics on dynamics of mathematical models arising from major areas of science and engineering. The journal is published quarterly in February, April, June, August, October and December by Shanghai Normal University and Wilmington Scientific Publisher, and issued by Shanghai Normal University.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信