{"title":"一种具有线性空间复杂度的在常数平均时间内寻找最近邻的算法","authors":"L. Micó, J. Oncina, E. Vidal","doi":"10.1109/ICPR.1992.201840","DOIUrl":null,"url":null,"abstract":"Given a set of n points or 'prototypes' and another point or 'test sample'. The authors present an algorithm that finds a prototype that is a nearest neighbour of the test sample, by computing only a constant number of distances on the average. This is achieved through a preprocessing procedure that computes only a number of distances and uses an amount of memory that grows lineally with n. The algorithm is an improvement of the previously introduced AESA algorithm and, as such, does not assume the data to be structured into a vector space, making only use of the metric properties of the given distance.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"4 1","pages":"557-560"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"An algorithm for finding nearest neighbours in constant average time with a linear space complexity\",\"authors\":\"L. Micó, J. Oncina, E. Vidal\",\"doi\":\"10.1109/ICPR.1992.201840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a set of n points or 'prototypes' and another point or 'test sample'. The authors present an algorithm that finds a prototype that is a nearest neighbour of the test sample, by computing only a constant number of distances on the average. This is achieved through a preprocessing procedure that computes only a number of distances and uses an amount of memory that grows lineally with n. The algorithm is an improvement of the previously introduced AESA algorithm and, as such, does not assume the data to be structured into a vector space, making only use of the metric properties of the given distance.<<ETX>>\",\"PeriodicalId\":34917,\"journal\":{\"name\":\"模式识别与人工智能\",\"volume\":\"4 1\",\"pages\":\"557-560\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"模式识别与人工智能\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.1992.201840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
An algorithm for finding nearest neighbours in constant average time with a linear space complexity
Given a set of n points or 'prototypes' and another point or 'test sample'. The authors present an algorithm that finds a prototype that is a nearest neighbour of the test sample, by computing only a constant number of distances on the average. This is achieved through a preprocessing procedure that computes only a number of distances and uses an amount of memory that grows lineally with n. The algorithm is an improvement of the previously introduced AESA algorithm and, as such, does not assume the data to be structured into a vector space, making only use of the metric properties of the given distance.<>