基于帧的稀疏表示与信号分析

Q3 Computer Science
C. Baker
{"title":"基于帧的稀疏表示与信号分析","authors":"C. Baker","doi":"10.4236/JSIP.2016.71006","DOIUrl":null,"url":null,"abstract":"The use of frames is analyzed in Compressed Sensing (CS) through proofs and experiments. First, a new generalized Dictionary-Restricted Isometry Property (D-RIP) sparsity bound constant for CS is established. Second, experiments with a tight frame to analyze sparsity and reconstruction quality using several signal and image types are shown. The constant  is used in fulfilling the definition of D-RIP. It is proved that k-sparse signals can be reconstructed if  by using a concise and transparent argument1. The approach could be extended to obtain other D-RIP bounds (i.e. ). Experiments contrast results of a Gabor tight frame with Total Variation minimization. In cases of practical interest, the use of a Gabor dictionary performs well when achieving a highly sparse representation and poorly when this sparsity is not achieved.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"8 1","pages":"39-48"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sparse Representation by Frames with Signal Analysis\",\"authors\":\"C. Baker\",\"doi\":\"10.4236/JSIP.2016.71006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of frames is analyzed in Compressed Sensing (CS) through proofs and experiments. First, a new generalized Dictionary-Restricted Isometry Property (D-RIP) sparsity bound constant for CS is established. Second, experiments with a tight frame to analyze sparsity and reconstruction quality using several signal and image types are shown. The constant  is used in fulfilling the definition of D-RIP. It is proved that k-sparse signals can be reconstructed if  by using a concise and transparent argument1. The approach could be extended to obtain other D-RIP bounds (i.e. ). Experiments contrast results of a Gabor tight frame with Total Variation minimization. In cases of practical interest, the use of a Gabor dictionary performs well when achieving a highly sparse representation and poorly when this sparsity is not achieved.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"8 1\",\"pages\":\"39-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/JSIP.2016.71006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/JSIP.2016.71006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

通过验证和实验,分析了帧在压缩感知中的应用。首先,建立了一种新的广义字典限制等距性(D-RIP)稀疏界常数。其次,给出了使用几种信号和图像类型分析稀疏性和重建质量的紧框架实验。该常数用于满足D-RIP的定义。用一个简洁透明的参数证明了k-稀疏信号是可以重构的。该方法可以扩展到获得其他D-RIP边界(即)。实验结果与全变异最小化的Gabor紧框架进行了对比。在实际应用中,当获得高度稀疏的表示时,使用Gabor字典表现良好,而当没有达到这种稀疏性时,使用Gabor字典表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse Representation by Frames with Signal Analysis
The use of frames is analyzed in Compressed Sensing (CS) through proofs and experiments. First, a new generalized Dictionary-Restricted Isometry Property (D-RIP) sparsity bound constant for CS is established. Second, experiments with a tight frame to analyze sparsity and reconstruction quality using several signal and image types are shown. The constant  is used in fulfilling the definition of D-RIP. It is proved that k-sparse signals can be reconstructed if  by using a concise and transparent argument1. The approach could be extended to obtain other D-RIP bounds (i.e. ). Experiments contrast results of a Gabor tight frame with Total Variation minimization. In cases of practical interest, the use of a Gabor dictionary performs well when achieving a highly sparse representation and poorly when this sparsity is not achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信