定量反馈理论(QFT)

I. Horowitz
{"title":"定量反馈理论(QFT)","authors":"I. Horowitz","doi":"10.23919/ACC.1988.4790059","DOIUrl":null,"url":null,"abstract":"In QFT, the feedback design problem has always been that of achieving defined performance over specified range of plant uncertainty, with minimum \"cost of feedback\". Eigenvalue realization was always considered an incidental problem. Two benchmark problems are presented. The first is a 2×2 highly uncertain nonlinear plant. The second is a 3×7 digital (60 Hz) flight control problem with uncertainty consisting of 36 possible effector failure cases with no failure detection and identification, i.e. a fixed compensation design. Both problems were solved by QFT with satisfactory results.","PeriodicalId":6395,"journal":{"name":"1988 American Control Conference","volume":"2 1","pages":"2032-2037"},"PeriodicalIF":0.0000,"publicationDate":"1988-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Quantitative Feedback Theory (QFT)\",\"authors\":\"I. Horowitz\",\"doi\":\"10.23919/ACC.1988.4790059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In QFT, the feedback design problem has always been that of achieving defined performance over specified range of plant uncertainty, with minimum \\\"cost of feedback\\\". Eigenvalue realization was always considered an incidental problem. Two benchmark problems are presented. The first is a 2×2 highly uncertain nonlinear plant. The second is a 3×7 digital (60 Hz) flight control problem with uncertainty consisting of 36 possible effector failure cases with no failure detection and identification, i.e. a fixed compensation design. Both problems were solved by QFT with satisfactory results.\",\"PeriodicalId\":6395,\"journal\":{\"name\":\"1988 American Control Conference\",\"volume\":\"2 1\",\"pages\":\"2032-2037\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1988 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC.1988.4790059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1988 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.1988.4790059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

在QFT中,反馈设计问题一直是在给定的不确定性范围内,以最小的“反馈成本”实现定义的性能。特征值的实现一直被认为是一个附带问题。提出了两个基准问题。第一个是2×2高度不确定的非线性对象。第二个是3×7数字(60 Hz)飞行控制问题,不确定性包括36个可能的效应器故障案例,没有故障检测和识别,即固定补偿设计。用量子傅立叶变换解决了这两个问题,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative Feedback Theory (QFT)
In QFT, the feedback design problem has always been that of achieving defined performance over specified range of plant uncertainty, with minimum "cost of feedback". Eigenvalue realization was always considered an incidental problem. Two benchmark problems are presented. The first is a 2×2 highly uncertain nonlinear plant. The second is a 3×7 digital (60 Hz) flight control problem with uncertainty consisting of 36 possible effector failure cases with no failure detection and identification, i.e. a fixed compensation design. Both problems were solved by QFT with satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信