西班牙小水坝和堤坝蓄水层的非故意补给:一种基于gis的方法来确定分数体积

IF 1.6 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
E. Escalante, José David Henao Casas, Carlos Moreno de Guerra Per, María Dolores Maza Vera, Carles Moreno Valverde
{"title":"西班牙小水坝和堤坝蓄水层的非故意补给:一种基于gis的方法来确定分数体积","authors":"E. Escalante, José David Henao Casas, Carlos Moreno de Guerra Per, María Dolores Maza Vera, Carles Moreno Valverde","doi":"10.3390/earth4030031","DOIUrl":null,"url":null,"abstract":"Conducting an accurate hydrological water balance at the regional and country-wide scales is paramount to assessing available water resources and adequately allocating them. One of the main components of these balances is the anthropogenic recharge of groundwater either intentionally, through managed aquifer recharge (MAR), or unintentionally, where infiltration from dams and dykes can play a significant role. In Spain, proper management of water resources is critical due to the arid to semiarid conditions prevalent in most of the territory and the relevance of water resources for maintaining a robust agricultural sector. Previous work estimated country-wide recharge from MAR at 150 to 280 Mm3/year. Recently, water authorities pointed out that, according to hydrological water balances, the total unintentional recharge volume from water courses may exceed 500 Mm3/year. The present research aims to present a new inventory of transverse structures (also referred to as small dams and dykes) in Spain and use it to estimate country-wide unintentional recharge. The inventory, compiled by the Spanish Ministry for the Ecological Transition and the Demographic Challenge, has 27,680 structures and includes construction and impoundment characteristics, which allow for estimating the wet perimeter and the infiltration area. To this end, structural data from the inventory were crossed through map algebra in a GIS environment with thematic layers, such as lithology, permeability, the digital elevation model, the transverse structures’ wetted area, the average groundwater levels, and a clogging correction factor. Two analytical formulas to compute infiltration from small dams and dykes were tested. The resulting volume of unintentional recharge from transverse structures ranges between 812.5 and 2716.6 Mm3/year. The comparison against regional and national water balances suggests that the lowest value of the range (i.e., 812.5 Mm3/year) is probably the most realistic. Anthropogenic recharge from MAR and transverse structures is likely in the range of 1012.5–1514.8 Mm3/year. This rough figure can help close the hydrological balance at the national and river basin levels and contribute to calibrating regional models. Furthermore, they provide an order of magnitude for anthropogenic recharge at a national scale, which is difficult to obtain.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unintentional Recharge of Aquifers from Small Dams and Dykes in Spain: A GIS-Based Approach to Determine a Fractional Volume\",\"authors\":\"E. Escalante, José David Henao Casas, Carlos Moreno de Guerra Per, María Dolores Maza Vera, Carles Moreno Valverde\",\"doi\":\"10.3390/earth4030031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conducting an accurate hydrological water balance at the regional and country-wide scales is paramount to assessing available water resources and adequately allocating them. One of the main components of these balances is the anthropogenic recharge of groundwater either intentionally, through managed aquifer recharge (MAR), or unintentionally, where infiltration from dams and dykes can play a significant role. In Spain, proper management of water resources is critical due to the arid to semiarid conditions prevalent in most of the territory and the relevance of water resources for maintaining a robust agricultural sector. Previous work estimated country-wide recharge from MAR at 150 to 280 Mm3/year. Recently, water authorities pointed out that, according to hydrological water balances, the total unintentional recharge volume from water courses may exceed 500 Mm3/year. The present research aims to present a new inventory of transverse structures (also referred to as small dams and dykes) in Spain and use it to estimate country-wide unintentional recharge. The inventory, compiled by the Spanish Ministry for the Ecological Transition and the Demographic Challenge, has 27,680 structures and includes construction and impoundment characteristics, which allow for estimating the wet perimeter and the infiltration area. To this end, structural data from the inventory were crossed through map algebra in a GIS environment with thematic layers, such as lithology, permeability, the digital elevation model, the transverse structures’ wetted area, the average groundwater levels, and a clogging correction factor. Two analytical formulas to compute infiltration from small dams and dykes were tested. The resulting volume of unintentional recharge from transverse structures ranges between 812.5 and 2716.6 Mm3/year. The comparison against regional and national water balances suggests that the lowest value of the range (i.e., 812.5 Mm3/year) is probably the most realistic. Anthropogenic recharge from MAR and transverse structures is likely in the range of 1012.5–1514.8 Mm3/year. This rough figure can help close the hydrological balance at the national and river basin levels and contribute to calibrating regional models. Furthermore, they provide an order of magnitude for anthropogenic recharge at a national scale, which is difficult to obtain.\",\"PeriodicalId\":51020,\"journal\":{\"name\":\"Earth Interactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Interactions\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/earth4030031\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Interactions","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/earth4030031","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在区域和全国范围内进行准确的水文水平衡对于评估可用水资源和充分分配水资源至关重要。这些平衡的主要组成部分之一是地下水的人为补给,无论是有意的,通过管理含水层补给(MAR),还是无意的,其中大坝和堤防的渗透可以发挥重要作用。在西班牙,水资源的适当管理是至关重要的,因为大部分领土普遍存在干旱至半干旱的条件,而且水资源与维持强劲的农业部门有关。以前的工作估计,全国范围内MAR的补给量为150至280 Mm3/年。最近,水务部门指出,根据水文水量平衡,河道的非故意补给总量可能超过500立方毫米/年。目前的研究旨在对西班牙的横向结构(也被称为小水坝和堤坝)进行新的盘点,并用它来估计全国范围内的非故意补给。该清单由西班牙生态转型和人口挑战部编制,包含27,680个结构,包括建筑和蓄水特征,可以估算湿周和渗透面积。为此,在具有主题层(如岩性、渗透率、数字高程模型、横向结构的浸湿面积、平均地下水位和堵塞校正系数)的GIS环境中,通过地图代数对清单中的结构数据进行交叉。对两种计算小坝小堤入渗的解析公式进行了试验。由此产生的横向结构无意回灌量在812.5至2716.6 Mm3/年之间。与区域和国家水平衡的比较表明,该范围的最低值(即812.5立方毫米/年)可能是最现实的。来自MAR和横向构造的人为补给可能在1012.5-1514.8 Mm3/年之间。这个粗略的数字可以帮助接近国家和流域层面的水文平衡,并有助于校准区域模式。此外,它们在国家尺度上提供了一个难以获得的人为补给的数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unintentional Recharge of Aquifers from Small Dams and Dykes in Spain: A GIS-Based Approach to Determine a Fractional Volume
Conducting an accurate hydrological water balance at the regional and country-wide scales is paramount to assessing available water resources and adequately allocating them. One of the main components of these balances is the anthropogenic recharge of groundwater either intentionally, through managed aquifer recharge (MAR), or unintentionally, where infiltration from dams and dykes can play a significant role. In Spain, proper management of water resources is critical due to the arid to semiarid conditions prevalent in most of the territory and the relevance of water resources for maintaining a robust agricultural sector. Previous work estimated country-wide recharge from MAR at 150 to 280 Mm3/year. Recently, water authorities pointed out that, according to hydrological water balances, the total unintentional recharge volume from water courses may exceed 500 Mm3/year. The present research aims to present a new inventory of transverse structures (also referred to as small dams and dykes) in Spain and use it to estimate country-wide unintentional recharge. The inventory, compiled by the Spanish Ministry for the Ecological Transition and the Demographic Challenge, has 27,680 structures and includes construction and impoundment characteristics, which allow for estimating the wet perimeter and the infiltration area. To this end, structural data from the inventory were crossed through map algebra in a GIS environment with thematic layers, such as lithology, permeability, the digital elevation model, the transverse structures’ wetted area, the average groundwater levels, and a clogging correction factor. Two analytical formulas to compute infiltration from small dams and dykes were tested. The resulting volume of unintentional recharge from transverse structures ranges between 812.5 and 2716.6 Mm3/year. The comparison against regional and national water balances suggests that the lowest value of the range (i.e., 812.5 Mm3/year) is probably the most realistic. Anthropogenic recharge from MAR and transverse structures is likely in the range of 1012.5–1514.8 Mm3/year. This rough figure can help close the hydrological balance at the national and river basin levels and contribute to calibrating regional models. Furthermore, they provide an order of magnitude for anthropogenic recharge at a national scale, which is difficult to obtain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Interactions
Earth Interactions 地学-地球科学综合
CiteScore
2.70
自引率
5.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Publishes research on the interactions among the atmosphere, hydrosphere, biosphere, cryosphere, and lithosphere, including, but not limited to, research on human impacts, such as land cover change, irrigation, dams/reservoirs, urbanization, pollution, and landslides. Earth Interactions is a joint publication of the American Meteorological Society, American Geophysical Union, and American Association of Geographers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信