代数闭域和有限域上矩阵的若干分解

IF 0.4 Q4 MATHEMATICS
P. Danchev
{"title":"代数闭域和有限域上矩阵的若干分解","authors":"P. Danchev","doi":"10.17516/1997-1397-2021-14-5-547-553","DOIUrl":null,"url":null,"abstract":"We study when every square matrix over an algebraically closed field or over a finite field is decomposable into a sum of a potent matrix and a nilpotent matrix of order 2. This can be related to our recent paper, published in Linear & Multilinear Algebra (2022). We also completely address the question when each square matrix over an infinite field can be decomposed into a periodic matrix and a nilpotent matrix of order 2","PeriodicalId":43965,"journal":{"name":"Journal of Siberian Federal University-Mathematics & Physics","volume":"9 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Some Decompositions of Matrices over Algebraically Closed and Finite Fields\",\"authors\":\"P. Danchev\",\"doi\":\"10.17516/1997-1397-2021-14-5-547-553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study when every square matrix over an algebraically closed field or over a finite field is decomposable into a sum of a potent matrix and a nilpotent matrix of order 2. This can be related to our recent paper, published in Linear & Multilinear Algebra (2022). We also completely address the question when each square matrix over an infinite field can be decomposed into a periodic matrix and a nilpotent matrix of order 2\",\"PeriodicalId\":43965,\"journal\":{\"name\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University-Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2021-14-5-547-553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University-Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-5-547-553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了代数闭域或有限域上的每一个方阵何时可分解为幂幂矩阵和幂零矩阵的2阶和。这可能与我们最近发表在《线性与多线性代数》(2022)上的论文有关。我们也完全解决了当一个无限域上的每个方阵可以分解成一个周期矩阵和一个2阶幂零矩阵的问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Some Decompositions of Matrices over Algebraically Closed and Finite Fields
We study when every square matrix over an algebraically closed field or over a finite field is decomposable into a sum of a potent matrix and a nilpotent matrix of order 2. This can be related to our recent paper, published in Linear & Multilinear Algebra (2022). We also completely address the question when each square matrix over an infinite field can be decomposed into a periodic matrix and a nilpotent matrix of order 2
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
26
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信