ASIP设计中资源受限的高级数据路径优化

Yuankai Chen, H. Zhou
{"title":"ASIP设计中资源受限的高级数据路径优化","authors":"Yuankai Chen, H. Zhou","doi":"10.7873/DATE.2013.054","DOIUrl":null,"url":null,"abstract":"In this work, we study the problem of optimizing the data-path under resource constraint in the high-level synthesis of Application-Specific Instruction Processor (ASIP). We propose a two-level dynamic programming (DP) based heuristic algorithm. At the inner level of the proposed algorithm, the instructions are sorted in topological order, and then a DP algorithm is applied to optimize the topological order of the datapath. At the outer level, the space of the topological order of each instruction is explored to iteratively improve the solution. Compared with an optimal brutal-force algorithm, the proposed algorithm achieves near-optimal solution, with only 3% more performance overhead on average but significant reduction in runtime. Compared with a greedy algorithm which replaces the DP inner level with a greedy heuristic approach, the proposed algorithm achieves 48% reduction in performance overhead.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"1 1","pages":"198-201"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Resource-constrained high-level datapath optimization in ASIP design\",\"authors\":\"Yuankai Chen, H. Zhou\",\"doi\":\"10.7873/DATE.2013.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the problem of optimizing the data-path under resource constraint in the high-level synthesis of Application-Specific Instruction Processor (ASIP). We propose a two-level dynamic programming (DP) based heuristic algorithm. At the inner level of the proposed algorithm, the instructions are sorted in topological order, and then a DP algorithm is applied to optimize the topological order of the datapath. At the outer level, the space of the topological order of each instruction is explored to iteratively improve the solution. Compared with an optimal brutal-force algorithm, the proposed algorithm achieves near-optimal solution, with only 3% more performance overhead on average but significant reduction in runtime. Compared with a greedy algorithm which replaces the DP inner level with a greedy heuristic approach, the proposed algorithm achieves 48% reduction in performance overhead.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":\"1 1\",\"pages\":\"198-201\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了专用指令处理器(ASIP)高级合成中资源约束下的数据路径优化问题。提出了一种基于两级动态规划的启发式算法。在算法内部,对指令按拓扑顺序进行排序,然后采用DP算法对数据路径的拓扑顺序进行优化。在外部层次,探索每条指令的拓扑顺序空间,迭代改进解。与最优野蛮力算法相比,该算法实现了近似最优解,性能开销平均仅增加3%,但运行时间显著缩短。与用贪心启发式方法取代DP内层的贪心算法相比,该算法的性能开销降低了48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resource-constrained high-level datapath optimization in ASIP design
In this work, we study the problem of optimizing the data-path under resource constraint in the high-level synthesis of Application-Specific Instruction Processor (ASIP). We propose a two-level dynamic programming (DP) based heuristic algorithm. At the inner level of the proposed algorithm, the instructions are sorted in topological order, and then a DP algorithm is applied to optimize the topological order of the datapath. At the outer level, the space of the topological order of each instruction is explored to iteratively improve the solution. Compared with an optimal brutal-force algorithm, the proposed algorithm achieves near-optimal solution, with only 3% more performance overhead on average but significant reduction in runtime. Compared with a greedy algorithm which replaces the DP inner level with a greedy heuristic approach, the proposed algorithm achieves 48% reduction in performance overhead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信