{"title":"钒(III)与汞(II)在高氯酸水溶液中的反应机理","authors":"M. Green, W. Higginson, J. Stead, A. Sykes","doi":"10.1039/J19710003068","DOIUrl":null,"url":null,"abstract":"Kinetic studies on the reaction of vanadium(III) with mercury(II), 2VIII+ 2HgII→ 2VIV+(HgI)2, in perchloric acid solutions of ionic strengths 2·0M(LiClO4) and 3·0M(NaClO4) are consistent with the mechanism (i)–(iii). VIII+ HgII [graphic omitted] VIV+ HgI(i), VIII+ HgI [graphic omitted] VIV+ Hg0(ii), VIV+ HgI [graphic omitted] VV+ Hg0(iii), Subsequent reactions Hg0+ HgII→(HgI)2, and VIII+ VV→ 2VIV are more rapid and are not rate determining. The rate law corresponding to (i)–(iii) is given by (iv). At low initial vanadium(IV) concentrations the [graphic omitted] second term in (iv) is negligible, but at high vanadium(IV) concentrations (>0·1M) the second term becomes dominant. Although the kinetics do not rule out the two-electron reaction VIII+ HgII→ VV+ Hg0 as an alternative to (iii), the consecutive one-electron changes V3+→ VO2+→ VO2+ are considered more likely.","PeriodicalId":17321,"journal":{"name":"Journal of The Chemical Society A: Inorganic, Physical, Theoretical","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1971-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of the reaction of vanadium(III) with mercury(II) in aqueous perchloric acid solutions\",\"authors\":\"M. Green, W. Higginson, J. Stead, A. Sykes\",\"doi\":\"10.1039/J19710003068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinetic studies on the reaction of vanadium(III) with mercury(II), 2VIII+ 2HgII→ 2VIV+(HgI)2, in perchloric acid solutions of ionic strengths 2·0M(LiClO4) and 3·0M(NaClO4) are consistent with the mechanism (i)–(iii). VIII+ HgII [graphic omitted] VIV+ HgI(i), VIII+ HgI [graphic omitted] VIV+ Hg0(ii), VIV+ HgI [graphic omitted] VV+ Hg0(iii), Subsequent reactions Hg0+ HgII→(HgI)2, and VIII+ VV→ 2VIV are more rapid and are not rate determining. The rate law corresponding to (i)–(iii) is given by (iv). At low initial vanadium(IV) concentrations the [graphic omitted] second term in (iv) is negligible, but at high vanadium(IV) concentrations (>0·1M) the second term becomes dominant. Although the kinetics do not rule out the two-electron reaction VIII+ HgII→ VV+ Hg0 as an alternative to (iii), the consecutive one-electron changes V3+→ VO2+→ VO2+ are considered more likely.\",\"PeriodicalId\":17321,\"journal\":{\"name\":\"Journal of The Chemical Society A: Inorganic, Physical, Theoretical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1971-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Chemical Society A: Inorganic, Physical, Theoretical\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/J19710003068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chemical Society A: Inorganic, Physical, Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/J19710003068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanism of the reaction of vanadium(III) with mercury(II) in aqueous perchloric acid solutions
Kinetic studies on the reaction of vanadium(III) with mercury(II), 2VIII+ 2HgII→ 2VIV+(HgI)2, in perchloric acid solutions of ionic strengths 2·0M(LiClO4) and 3·0M(NaClO4) are consistent with the mechanism (i)–(iii). VIII+ HgII [graphic omitted] VIV+ HgI(i), VIII+ HgI [graphic omitted] VIV+ Hg0(ii), VIV+ HgI [graphic omitted] VV+ Hg0(iii), Subsequent reactions Hg0+ HgII→(HgI)2, and VIII+ VV→ 2VIV are more rapid and are not rate determining. The rate law corresponding to (i)–(iii) is given by (iv). At low initial vanadium(IV) concentrations the [graphic omitted] second term in (iv) is negligible, but at high vanadium(IV) concentrations (>0·1M) the second term becomes dominant. Although the kinetics do not rule out the two-electron reaction VIII+ HgII→ VV+ Hg0 as an alternative to (iii), the consecutive one-electron changes V3+→ VO2+→ VO2+ are considered more likely.