用于拉曼光谱定量分析的CWT-PLSR

S. Li, James O. Nyagilo, D. Dave, Jean X. Gao
{"title":"用于拉曼光谱定量分析的CWT-PLSR","authors":"S. Li, James O. Nyagilo, D. Dave, Jean X. Gao","doi":"10.1109/BIBM.2012.6392690","DOIUrl":null,"url":null,"abstract":"Quantitative analysis of Raman spectra using Surface Enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in vivo molecular imaging. Partial Least Square Regression (PLSR) methods are the state-of-the-art methods. But they rely on the whole intensities of Raman spectra and can not avoid the instable background. In this paper we design a new CWT-PLSR algorithm that uses mixing concentrations and the average continuous wavelet transform (CWT) coefficients of Raman spectra to do PLSR. The average CWT coefficients with a Mexican hat mother wavelet are robust representations of the Raman peaks, and the method can reduce the influences of the instable baseline and random noises during the prediction process. In the end, the algorithm is tested on three Raman spectrum data sets with three cross-validation methods, and the results show its robustness and effectiveness.","PeriodicalId":6392,"journal":{"name":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CWT-PLSR for quantitative analysis of Raman spectrum\",\"authors\":\"S. Li, James O. Nyagilo, D. Dave, Jean X. Gao\",\"doi\":\"10.1109/BIBM.2012.6392690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantitative analysis of Raman spectra using Surface Enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in vivo molecular imaging. Partial Least Square Regression (PLSR) methods are the state-of-the-art methods. But they rely on the whole intensities of Raman spectra and can not avoid the instable background. In this paper we design a new CWT-PLSR algorithm that uses mixing concentrations and the average continuous wavelet transform (CWT) coefficients of Raman spectra to do PLSR. The average CWT coefficients with a Mexican hat mother wavelet are robust representations of the Raman peaks, and the method can reduce the influences of the instable baseline and random noises during the prediction process. In the end, the algorithm is tested on three Raman spectrum data sets with three cross-validation methods, and the results show its robustness and effectiveness.\",\"PeriodicalId\":6392,\"journal\":{\"name\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2012.6392690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2012.6392690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

利用表面增强拉曼散射(SERS)纳米粒子对拉曼光谱进行定量分析,在体内分子成像中显示出潜在的发展趋势。偏最小二乘回归(PLSR)方法是最先进的方法。但它们依赖于拉曼光谱的整体强度,无法避免背景的不稳定。本文设计了一种新的CWT-PLSR算法,利用混合浓度和拉曼光谱的平均连续小波变换系数进行PLSR。基于墨西哥帽母小波的平均CWT系数是拉曼峰的鲁棒表征,该方法可以减小预测过程中不稳定基线和随机噪声的影响。最后,用三种交叉验证方法对三组拉曼光谱数据集进行了测试,结果表明了该算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CWT-PLSR for quantitative analysis of Raman spectrum
Quantitative analysis of Raman spectra using Surface Enhanced Raman scattering (SERS) nanoparticles has shown the potential and promising trend of development in vivo molecular imaging. Partial Least Square Regression (PLSR) methods are the state-of-the-art methods. But they rely on the whole intensities of Raman spectra and can not avoid the instable background. In this paper we design a new CWT-PLSR algorithm that uses mixing concentrations and the average continuous wavelet transform (CWT) coefficients of Raman spectra to do PLSR. The average CWT coefficients with a Mexican hat mother wavelet are robust representations of the Raman peaks, and the method can reduce the influences of the instable baseline and random noises during the prediction process. In the end, the algorithm is tested on three Raman spectrum data sets with three cross-validation methods, and the results show its robustness and effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信