金属泡沫板太阳能塔系统进气高度变化的实验分析

Sarmad A. Abdul Hussein, Mohammed A. Nima
{"title":"金属泡沫板太阳能塔系统进气高度变化的实验分析","authors":"Sarmad A. Abdul Hussein, Mohammed A. Nima","doi":"10.29194/njes.25030120","DOIUrl":null,"url":null,"abstract":"The experimental analysis is conducted under the Iraqi climate conditions to investigate the performance enhancement of a solar updraft tower system (SUTS) using the porous copper foam as an absorber plate and conventional absorber plate with absorber inclination angle of 18°. In the present work, a semicircular collector is divided into two identical quarter thermal collectors to become two identical SUTS. One of the quarter circular thermal collectors contains on the metal foam as an absorber plate, while the other quarter collector on the conventional flat copper absorber plate. In this study the air inlet height is changed of (3, 5, and 8) cm. The experimental tests carried out in Baghdad city (latitude 33.3° N). Results showed that the air inlet height variation caused to enhance the solar updraft tower performance. The highest values was recorded when the air inlet height is 3 cm using porous absorber compared to flat absorber plate. Copper material foam as an endothermic surface causes a marked decrease in average surface temperature of the plate. The maximum hourly thermal efficiency of solar collector was increased to about 41.6 % and the maximum enhancement of the power output to about 45.2 % compared with flat absorber plate.","PeriodicalId":7470,"journal":{"name":"Al-Nahrain Journal for Engineering Sciences","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Analysis of Air Inlet Height Variation in a Solar Tower system Using Plate and Metal Foam Absorber\",\"authors\":\"Sarmad A. Abdul Hussein, Mohammed A. Nima\",\"doi\":\"10.29194/njes.25030120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experimental analysis is conducted under the Iraqi climate conditions to investigate the performance enhancement of a solar updraft tower system (SUTS) using the porous copper foam as an absorber plate and conventional absorber plate with absorber inclination angle of 18°. In the present work, a semicircular collector is divided into two identical quarter thermal collectors to become two identical SUTS. One of the quarter circular thermal collectors contains on the metal foam as an absorber plate, while the other quarter collector on the conventional flat copper absorber plate. In this study the air inlet height is changed of (3, 5, and 8) cm. The experimental tests carried out in Baghdad city (latitude 33.3° N). Results showed that the air inlet height variation caused to enhance the solar updraft tower performance. The highest values was recorded when the air inlet height is 3 cm using porous absorber compared to flat absorber plate. Copper material foam as an endothermic surface causes a marked decrease in average surface temperature of the plate. The maximum hourly thermal efficiency of solar collector was increased to about 41.6 % and the maximum enhancement of the power output to about 45.2 % compared with flat absorber plate.\",\"PeriodicalId\":7470,\"journal\":{\"name\":\"Al-Nahrain Journal for Engineering Sciences\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Al-Nahrain Journal for Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29194/njes.25030120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Al-Nahrain Journal for Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29194/njes.25030120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在伊拉克气候条件下,研究了多孔泡沫铜作为吸收体板和吸收体倾角为18°的传统吸收体板对太阳上升气流塔式系统(SUTS)性能的增强作用。在本工作中,一个半圆形集热器被分成两个相同的四分之一集热器,成为两个相同的SUTS。其中一个四分之一圆形集热器在金属泡沫上作为吸收板,而另一个四分之一集热器在传统的扁平铜吸收板上。在本研究中,进气高度改变为(3、5和8)cm。在巴格达市(纬度33.3°N)进行了实验测试,结果表明,进风口高度的变化导致了太阳上升气流塔性能的增强。与平板吸收体相比,多孔吸收体在进气口高度为3cm时所记录的数值最高。铜材料泡沫作为吸热表面,使板材的平均表面温度显著降低。与平板吸收板相比,太阳能集热器的最大小时热效率提高到41.6%左右,最大输出功率提高到45.2%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Analysis of Air Inlet Height Variation in a Solar Tower system Using Plate and Metal Foam Absorber
The experimental analysis is conducted under the Iraqi climate conditions to investigate the performance enhancement of a solar updraft tower system (SUTS) using the porous copper foam as an absorber plate and conventional absorber plate with absorber inclination angle of 18°. In the present work, a semicircular collector is divided into two identical quarter thermal collectors to become two identical SUTS. One of the quarter circular thermal collectors contains on the metal foam as an absorber plate, while the other quarter collector on the conventional flat copper absorber plate. In this study the air inlet height is changed of (3, 5, and 8) cm. The experimental tests carried out in Baghdad city (latitude 33.3° N). Results showed that the air inlet height variation caused to enhance the solar updraft tower performance. The highest values was recorded when the air inlet height is 3 cm using porous absorber compared to flat absorber plate. Copper material foam as an endothermic surface causes a marked decrease in average surface temperature of the plate. The maximum hourly thermal efficiency of solar collector was increased to about 41.6 % and the maximum enhancement of the power output to about 45.2 % compared with flat absorber plate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信