用正交投影估计联结体和联结体密度的非参数

IF 2.5 Q2 ECONOMICS
Yves I. Ngounou Bakam , Denys Pommeret
{"title":"用正交投影估计联结体和联结体密度的非参数","authors":"Yves I. Ngounou Bakam ,&nbsp;Denys Pommeret","doi":"10.1016/j.ecosta.2023.04.002","DOIUrl":null,"url":null,"abstract":"<div><div><span>A nonparametric copula<span> density estimator based on Legendre orthogonal polynomials is proposed. A nonparametric copula estimator is then deduced by integration. Their asymptotic properties are reviewed. Both estimators are based on a sequence of moments that characterize the copulas and that we shall call the </span></span><em>copula coefficients</em>. A data-driven method is proposed to select the number of copula coefficients to use. An intensive simulation study shows the good performance of both copulas and copula densities estimators compared to a large panel of competitors. Two real datasets illustrate this approach.</div></div>","PeriodicalId":54125,"journal":{"name":"Econometrics and Statistics","volume":"36 ","pages":"Pages 90-118"},"PeriodicalIF":2.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric estimation of copulas and copula densities by orthogonal projections\",\"authors\":\"Yves I. Ngounou Bakam ,&nbsp;Denys Pommeret\",\"doi\":\"10.1016/j.ecosta.2023.04.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><span>A nonparametric copula<span> density estimator based on Legendre orthogonal polynomials is proposed. A nonparametric copula estimator is then deduced by integration. Their asymptotic properties are reviewed. Both estimators are based on a sequence of moments that characterize the copulas and that we shall call the </span></span><em>copula coefficients</em>. A data-driven method is proposed to select the number of copula coefficients to use. An intensive simulation study shows the good performance of both copulas and copula densities estimators compared to a large panel of competitors. Two real datasets illustrate this approach.</div></div>\",\"PeriodicalId\":54125,\"journal\":{\"name\":\"Econometrics and Statistics\",\"volume\":\"36 \",\"pages\":\"Pages 90-118\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245230622300028X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245230622300028X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于Legendre正交多项式的非参数联结密度估计。然后通过积分推导出非参数共轭估计量。讨论了它们的渐近性质。这两个估计量都是基于一串矩,这些矩描述了联结的特征,我们称之为联结系数。提出了一种数据驱动的方法来选择要使用的copula系数的数量。密集的模拟研究表明,与大型竞争对手相比,copula和copula密度估计器都具有良好的性能。两个真实的数据集说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric estimation of copulas and copula densities by orthogonal projections
A nonparametric copula density estimator based on Legendre orthogonal polynomials is proposed. A nonparametric copula estimator is then deduced by integration. Their asymptotic properties are reviewed. Both estimators are based on a sequence of moments that characterize the copulas and that we shall call the copula coefficients. A data-driven method is proposed to select the number of copula coefficients to use. An intensive simulation study shows the good performance of both copulas and copula densities estimators compared to a large panel of competitors. Two real datasets illustrate this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
10.50%
发文量
84
期刊介绍: Econometrics and Statistics is the official journal of the networks Computational and Financial Econometrics and Computational and Methodological Statistics. It publishes research papers in all aspects of econometrics and statistics and comprises of the two sections Part A: Econometrics and Part B: Statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信