在折纸镶嵌面翻转

Q4 Mathematics
H. Akitaya, V. Dujmovic, D. Eppstein, Thomas C. Hull, Kshitij Jain, A. Lubiw
{"title":"在折纸镶嵌面翻转","authors":"H. Akitaya, V. Dujmovic, D. Eppstein, Thomas C. Hull, Kshitij Jain, A. Lubiw","doi":"10.20382/jocg.v11i1a15","DOIUrl":null,"url":null,"abstract":"Given a flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on a region of the plane) with a mountain-valley (MV) assignment $\\mu:E\\to\\{-1,1\\}$ indicating which creases in $E$ bend convexly (mountain) or concavely (valley), we may \\emph{flip} a face $F$ of $G$ to create a new MV assignment $\\mu_F$ which equals $\\mu$ except for all creases $e$ bordering $F$, where we have $\\mu_F(e)=-\\mu(e)$. In this paper we explore the configuration space of face flips for a variety of crease patterns $G$ that are tilings of the plane, proving examples where $\\mu_F$ results in a MV assignment that is either never, sometimes, or always flat-foldable for various choices of $F$. We also consider the problem of finding, given two foldable MV assignments $\\mu_1$ and $\\mu_2$ of a given crease pattern $G$, a minimal sequence of face flips to turn $\\mu_1$ into $\\mu_2$. We find polynomial-time algorithms for this in the cases where $G$ is either a square grid or the Miura-ori, and show that this problem is NP-hard in the case where $G$ is the triangle lattice.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"13 1","pages":"397-417"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face flips in origami tessellations\",\"authors\":\"H. Akitaya, V. Dujmovic, D. Eppstein, Thomas C. Hull, Kshitij Jain, A. Lubiw\",\"doi\":\"10.20382/jocg.v11i1a15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on a region of the plane) with a mountain-valley (MV) assignment $\\\\mu:E\\\\to\\\\{-1,1\\\\}$ indicating which creases in $E$ bend convexly (mountain) or concavely (valley), we may \\\\emph{flip} a face $F$ of $G$ to create a new MV assignment $\\\\mu_F$ which equals $\\\\mu$ except for all creases $e$ bordering $F$, where we have $\\\\mu_F(e)=-\\\\mu(e)$. In this paper we explore the configuration space of face flips for a variety of crease patterns $G$ that are tilings of the plane, proving examples where $\\\\mu_F$ results in a MV assignment that is either never, sometimes, or always flat-foldable for various choices of $F$. We also consider the problem of finding, given two foldable MV assignments $\\\\mu_1$ and $\\\\mu_2$ of a given crease pattern $G$, a minimal sequence of face flips to turn $\\\\mu_1$ into $\\\\mu_2$. We find polynomial-time algorithms for this in the cases where $G$ is either a square grid or the Miura-ori, and show that this problem is NP-hard in the case where $G$ is the triangle lattice.\",\"PeriodicalId\":54969,\"journal\":{\"name\":\"International Journal of Computational Geometry & Applications\",\"volume\":\"13 1\",\"pages\":\"397-417\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Geometry & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20382/jocg.v11i1a15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v11i1a15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

给定一个可平折的折纸折痕图$G=(V,E)$(平面区域上的平面图形的直线图),其中山谷(MV)分配$\mu:E\to\{-1,1\}$表示$E$中的折痕是凸折(山折)还是凹折(谷折),我们可以将$G$的面$F$\emph{翻个}面,以创建一个新的MV分配$\mu_F$,它等于$\mu$,除了$e$与$F$相邻的所有折痕。我们有$\mu_F(e)=-\mu(e)$。在本文中,我们探索了各种平面平铺的折痕图$G$的面翻转的构型空间,证明了$\mu_F$导致MV分配的例子,对于各种选择的$F$,该MV分配要么永远不能,有时或总是可平折的。我们还考虑了在给定折痕图$G$的两个可折叠MV分配$\mu_1$和$\mu_2$的情况下,寻找将$\mu_1$变成$\mu_2$的最小脸翻转序列的问题。我们在$G$是方形网格或Miura-ori的情况下找到了多项式时间算法,并证明了在$G$是三角形晶格的情况下这个问题是np困难的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face flips in origami tessellations
Given a flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on a region of the plane) with a mountain-valley (MV) assignment $\mu:E\to\{-1,1\}$ indicating which creases in $E$ bend convexly (mountain) or concavely (valley), we may \emph{flip} a face $F$ of $G$ to create a new MV assignment $\mu_F$ which equals $\mu$ except for all creases $e$ bordering $F$, where we have $\mu_F(e)=-\mu(e)$. In this paper we explore the configuration space of face flips for a variety of crease patterns $G$ that are tilings of the plane, proving examples where $\mu_F$ results in a MV assignment that is either never, sometimes, or always flat-foldable for various choices of $F$. We also consider the problem of finding, given two foldable MV assignments $\mu_1$ and $\mu_2$ of a given crease pattern $G$, a minimal sequence of face flips to turn $\mu_1$ into $\mu_2$. We find polynomial-time algorithms for this in the cases where $G$ is either a square grid or the Miura-ori, and show that this problem is NP-hard in the case where $G$ is the triangle lattice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms. Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信