关于a-余辛流形的一些结果

Q4 Mathematics
H. Yoldaş
{"title":"关于a-余辛流形的一些结果","authors":"H. Yoldaş","doi":"10.31926/but.mif.2021.1.63.2.10","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with some geometric properties of an -cosymplectic manifold. First, we give some classi cations for an alpha-cosymplectic manifold endowed with some special vector elds such as projective, concircular and torse-forming. Then, we study alpha-cosymplectic manifold admitting eta-Ricci solitons with projective, a ne conformal vector elds. Finally, we obtain some haracterizations for such a manifold to be Einstein, eta-Einstein, cosymplectic.","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":"149 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results on a-cosympletic manifolds\",\"authors\":\"H. Yoldaş\",\"doi\":\"10.31926/but.mif.2021.1.63.2.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with some geometric properties of an -cosymplectic manifold. First, we give some classi cations for an alpha-cosymplectic manifold endowed with some special vector elds such as projective, concircular and torse-forming. Then, we study alpha-cosymplectic manifold admitting eta-Ricci solitons with projective, a ne conformal vector elds. Finally, we obtain some haracterizations for such a manifold to be Einstein, eta-Einstein, cosymplectic.\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\"149 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2021.1.63.2.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2021.1.63.2.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了一类-余辛流形的一些几何性质。首先,我们给出了具有射影、共圆和扭转等特殊向量域的-余辛流形的一些分类。然后,我们研究了具有射影的- ricci孤子的-余辛流形,这是一个新的共形向量域。最后,我们得到了这种流形为爱因斯坦、-爱因斯坦、协辛的一些特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results on a-cosympletic manifolds
In this paper, we deal with some geometric properties of an -cosymplectic manifold. First, we give some classi cations for an alpha-cosymplectic manifold endowed with some special vector elds such as projective, concircular and torse-forming. Then, we study alpha-cosymplectic manifold admitting eta-Ricci solitons with projective, a ne conformal vector elds. Finally, we obtain some haracterizations for such a manifold to be Einstein, eta-Einstein, cosymplectic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信