指数逆幂柯西分布的统计性质及应用

L. Sapkota
{"title":"指数逆幂柯西分布的统计性质及应用","authors":"L. Sapkota","doi":"10.3126/jist.v27i1.46685","DOIUrl":null,"url":null,"abstract":"In this article, we have introduced the new distribution named exponentiated inverse power Cauchy distribution, which presents more flexibility in modeling a real lifetime dataset. The proposed distribution is analytically appealing and easy to work with and can be used efficiently to analyze the real data sets. Its probability density function can include various shapes according to the value of the parameters. Different explicit expressions for its quantile, survival, hazard and generating function, density function of the order statistics, cumulative hazard function, and failure rate function are provided. The model’s parameters are estimated by using the maximum likelihood estimation method, and we also obtained the observed information matrix. We have also constructed the asymptotic confidence intervals for the estimated parameters of the proposed distribution. We have illustrated the goodness-of-fit test and the application of the purposed distribution empirically through a real-life data set. All the computations are performed in R software (version 4.1.1). It is observed that the proposed distribution gets at least similar or a better fit than some selected distributions taken for comparison.","PeriodicalId":16072,"journal":{"name":"Journal of Hunan Institute of Science and Technology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Properties and Applications of Exponentiated Inverse Power Cauchy Distribution\",\"authors\":\"L. Sapkota\",\"doi\":\"10.3126/jist.v27i1.46685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we have introduced the new distribution named exponentiated inverse power Cauchy distribution, which presents more flexibility in modeling a real lifetime dataset. The proposed distribution is analytically appealing and easy to work with and can be used efficiently to analyze the real data sets. Its probability density function can include various shapes according to the value of the parameters. Different explicit expressions for its quantile, survival, hazard and generating function, density function of the order statistics, cumulative hazard function, and failure rate function are provided. The model’s parameters are estimated by using the maximum likelihood estimation method, and we also obtained the observed information matrix. We have also constructed the asymptotic confidence intervals for the estimated parameters of the proposed distribution. We have illustrated the goodness-of-fit test and the application of the purposed distribution empirically through a real-life data set. All the computations are performed in R software (version 4.1.1). It is observed that the proposed distribution gets at least similar or a better fit than some selected distributions taken for comparison.\",\"PeriodicalId\":16072,\"journal\":{\"name\":\"Journal of Hunan Institute of Science and Technology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hunan Institute of Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jist.v27i1.46685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hunan Institute of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jist.v27i1.46685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了一种新的分布,称为指数逆幂Cauchy分布,它在建模真实生命周期数据集时提供了更大的灵活性。所提出的分布在分析上具有吸引力,易于使用,并且可以有效地用于分析实际数据集。根据参数的取值,其概率密度函数可以包含各种形状。给出了其分位数、生存、危害和生成函数、阶统计量密度函数、累积危害函数和故障率函数的不同显式表达式。利用极大似然估计法对模型参数进行估计,并得到观测信息矩阵。我们还构造了所提出分布的估计参数的渐近置信区间。我们通过一个实际数据集实证地说明了拟合优度检验和目的分布的应用。所有计算均在R软件(版本4.1.1)中完成。可以观察到,所提出的分布至少与用于比较的某些选定分布相似或更好地拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Properties and Applications of Exponentiated Inverse Power Cauchy Distribution
In this article, we have introduced the new distribution named exponentiated inverse power Cauchy distribution, which presents more flexibility in modeling a real lifetime dataset. The proposed distribution is analytically appealing and easy to work with and can be used efficiently to analyze the real data sets. Its probability density function can include various shapes according to the value of the parameters. Different explicit expressions for its quantile, survival, hazard and generating function, density function of the order statistics, cumulative hazard function, and failure rate function are provided. The model’s parameters are estimated by using the maximum likelihood estimation method, and we also obtained the observed information matrix. We have also constructed the asymptotic confidence intervals for the estimated parameters of the proposed distribution. We have illustrated the goodness-of-fit test and the application of the purposed distribution empirically through a real-life data set. All the computations are performed in R software (version 4.1.1). It is observed that the proposed distribution gets at least similar or a better fit than some selected distributions taken for comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信